Tkool Electronics

TDA7294IntroductionTheTDA7294isamonolithicintegratedcircuitinMultiwatt15package,intendedforuseasaudioclassABamplifierinHi-Fifieldapplications(HomeStereo,self-poweredloudspeakers,TopclassTV).Thankstothewidevoltagerangeandtothehighoutcurrentcapabilityitisabletosupplythehighestpowerintoboth4Ωand8Ωloadseveninpresenceofpoorsupplyregulation,withhighSupplyVoltageRejection.Thebuilt-inmutingfunctionwithturn-ondelaysimplifiestheremoteoperationavoidingswitchingon-offnoises.ThisisabuildandevaluationoftheTDA7294100wattaudioamplifierI.C.CatalogTDA7294IntroductionTDA7294FeaturesTDA7294PinConfigurationandFunctionsTDA7294BlockDiagramTDA7294PackageOutlineTDA7294AlternativesWhereandHowtouseTDA7294TDA7294ElectricalSpecificationsTDA7294ApplicationsDifferenceBetweenTDA7294andTDA7293ProductManufacturerComponentDatasheetOrdering&QuantityTDA7294FeaturesVeryhighoperatingvoltagerange(40V)DMOSpowerstageHighoutputpower(upto100wmusicpower)Muting/stand-byfunctionsNoswitchon/offnoiseNoBoucheroncellsVerylowdistortionVerylownoiseShortcircuitprotectionThermalshutdownTDA7294PinConfigurationandFunctionsPinfunctions:PinNo.PinNamePinDescription1Stand-ByGNDStand-ByGND,outputgetsconnectedtoground2InvertinginputTheInvertinginput3Non-InvertinginputTheNon-Invertinginput4SVRSupplyVoltageRejectionusedforpowersupplyrippleornoiserejection5N.C.Notconnected6BootstrapUsedtostep-upcharge7+VsSupplyPositivesupply8-VsSupplyNegativesupply9Stand-byStandbycontrolpinusedforlowpowermode,outputrunsinlowcurrentmode10MuteAudioisdisabledoftheoutput11N.C.Notconnected12N.C.Notconnected13+VsPowerPositivepowersupply14OutOutputpin15-VsPowerNegativepowersupplyTDA7294BlockDiagramTDA7294PackageOutlineMultiwatt15VpackageinformationMechanicalData:Multiwatt15HpackageinformationMechanicalData:TDA7294AlternativesTDA7293,TDA7295,LM3886WhereandHowtoUseTDA7294TDA7294canbeusedincircuitsrequiringhighpowerandhigh-efficiencyamplificationapplications.R1istheinputresistanceanditsrecommendedvalueis22kΩ.R2=680ΩandR3=22kΩdecidestheloopgainoftheamplifier.TheR4=22kΩandC4=10FdeterminethestandbyON/OFFtimeduration.TheR5=10kΩandC3=10Fareusedfordecidingthemutetimeconstant.DecouplingusedisC1=0.47F.C2=22mFisthefeedbackDC.C5=22mFBootstrapping.C6,C8=1000mFandC7,C90.1mFareusedforsupplyvoltagebypass.TDA7294ElectricalSpecificationsMaximumVSSupplyVoltage(NoSignal)50VMaximumIOOutputPeakCurrent10AMaximumTopOperatingAmbientTemperatureRange0to70CMaximumTstg,TjStorageandJunctionTemperature150CVSSupplyRangeisminimum10Vandmaximumvalue40VOpen-LoopVoltageGain80dBClosed-LoopVoltageGainminimum24dB,typically30dBandmaximum40dBIbInputBiasCurrent500nATDA7294ApplicationsHI-FICAR-RADIOBridgeApplicationCircuitAnaudioclassABamplifierStereossystemSubwooferDifferencesBetweenTDA7294andTDA7293FeaturesofTDA7293MultipowerBCDtechnologyVeryhighoperatingvoltagerange(50V)DMOSpowerstageHighoutputpower(100Winto8Ω@THD=10%,withVS=40V)Mutingandstand-byfunctionsNoswitchon/offnoiseVerylowdistortionVerylownoiseShort-circuitprotected(withnoinputsignalapplied)ThermalshutdownClipdetectorModularity(severaldevicescaneasilybeconnectedinparalleltodriveverylowimpedances)BoththeseaudiochipsuseDMOSordouble-diffusedmetaloxidesemiconductoroutputstages.Supplyrailsare+/-60VDCmaxfortheTDA7293and+/-50VDCfortheTDA7294,transformersupplyrailsAC32V-0-32Vto35V-0-35V,recommendationis32V-0-32Vfor8ohmoperation.TheconversionratevalueofTDA7293isalso10V/us,butithasawidervoltagesupplyrange,andthehighestavailabledual50VDCpowersupply,whichmeansthatithasalargerdynamicrangeandhigheroutputpowerthanTDA7294.Indual40VDCpowersupply,anaverageoutputpowerof100Wcanbeachievedat8ohmload.Ofcourse,ifthevoltageisincreasedtodouble50V,orasmallerloadsuchas4ohm,therewillbegreateroutputpower,accordingtothecharacteristicsofTDA7293,whenselectingatransformer,dual28VACvoltagecanbeselected,sothevoltageafterrectificationandfilteringisabout40V,ofcourse,thevoltagecanalsobeincreased.Consideringthatthereisafluctuationinthegridvoltage,itisbesttobelessthanthemaximumvoltageof50V,sothatthecircuitcanworkinamorestablecondition.ProductManufacturerSTMicroelectronics(ST)groupwasestablishedinJune1988asaresultofthemergerofSGSMicroelectronicsofItalyandThomsonOfFrance.InMay1998SGS-ThomsonMicroelectronicschangeditsnametoSTMicroelectronicsLimited.Itistheworldslargestmanufacturerofdedicatedanalogchipsandpowerconversionchips,theworldslargestsupplierofindustrialsemiconductorsandset-topboxchips,andaworldleaderindiscretecomponents,mobilephonecameramodules,andautomotiveintegratedcircuits.ComponentDatasheetTDA7294Datasheet

AIRMAX0S

TDA7294IntroductionTheTDA7294isamonolithicintegratedcircuitinMultiwatt15package,intendedforuseasaudioclassABamplifierinHi-Fifieldapplications(HomeStereo,self-poweredloudspeakers,TopclassTV).Thankstothewidevoltagerangeandtothehighoutcurrentcapabilityitisabletosupplythehighestpowerintoboth4Ωand8Ωloadseveninpresenceofpoorsupplyregulation,withhighSupplyVoltageRejection.Thebuilt-inmutingfunctionwithturn-ondelaysimplifiestheremoteoperationavoidingswitchingon-offnoises.ThisisabuildandevaluationoftheTDA7294100wattaudioamplifierI.C.CatalogTDA7294IntroductionTDA7294FeaturesTDA7294PinConfigurationandFunctionsTDA7294BlockDiagramTDA7294PackageOutlineTDA7294AlternativesWhereandHowtouseTDA7294TDA7294ElectricalSpecificationsTDA7294ApplicationsDifferenceBetweenTDA7294andTDA7293ProductManufacturerComponentDatasheetOrdering&QuantityTDA7294FeaturesVeryhighoperatingvoltagerange(40V)DMOSpowerstageHighoutputpower(upto100wmusicpower)Muting/stand-byfunctionsNoswitchon/offnoiseNoBoucheroncellsVerylowdistortionVerylownoiseShortcircuitprotectionThermalshutdownTDA7294PinConfigurationandFunctionsPinfunctions:PinNo.PinNamePinDescription1Stand-ByGNDStand-ByGND,outputgetsconnectedtoground2InvertinginputTheInvertinginput3Non-InvertinginputTheNon-Invertinginput4SVRSupplyVoltageRejectionusedforpowersupplyrippleornoiserejection5N.C.Notconnected6BootstrapUsedtostep-upcharge7+VsSupplyPositivesupply8-VsSupplyNegativesupply9Stand-byStandbycontrolpinusedforlowpowermode,outputrunsinlowcurrentmode10MuteAudioisdisabledoftheoutput11N.C.Notconnected12N.C.Notconnected13+VsPowerPositivepowersupply14OutOutputpin15-VsPowerNegativepowersupplyTDA7294BlockDiagramTDA7294PackageOutlineMultiwatt15VpackageinformationMechanicalData:Multiwatt15HpackageinformationMechanicalData:TDA7294AlternativesTDA7293,TDA7295,LM3886WhereandHowtoUseTDA7294TDA7294canbeusedincircuitsrequiringhighpowerandhigh-efficiencyamplificationapplications.R1istheinputresistanceanditsrecommendedvalueis22kΩ.R2=680ΩandR3=22kΩdecidestheloopgainoftheamplifier.TheR4=22kΩandC4=10FdeterminethestandbyON/OFFtimeduration.TheR5=10kΩandC3=10Fareusedfordecidingthemutetimeconstant.DecouplingusedisC1=0.47F.C2=22mFisthefeedbackDC.C5=22mFBootstrapping.C6,C8=1000mFandC7,C90.1mFareusedforsupplyvoltagebypass.TDA7294ElectricalSpecificationsMaximumVSSupplyVoltage(NoSignal)50VMaximumIOOutputPeakCurrent10AMaximumTopOperatingAmbientTemperatureRange0to70CMaximumTstg,TjStorageandJunctionTemperature150CVSSupplyRangeisminimum10Vandmaximumvalue40VOpen-LoopVoltageGain80dBClosed-LoopVoltageGainminimum24dB,typically30dBandmaximum40dBIbInputBiasCurrent500nATDA7294ApplicationsHI-FICAR-RADIOBridgeApplicationCircuitAnaudioclassABamplifierStereossystemSubwooferDifferencesBetweenTDA7294andTDA7293FeaturesofTDA7293MultipowerBCDtechnologyVeryhighoperatingvoltagerange(50V)DMOSpowerstageHighoutputpower(100Winto8Ω@THD=10%,withVS=40V)Mutingandstand-byfunctionsNoswitchon/offnoiseVerylowdistortionVerylownoiseShort-circuitprotected(withnoinputsignalapplied)ThermalshutdownClipdetectorModularity(severaldevicescaneasilybeconnectedinparalleltodriveverylowimpedances)BoththeseaudiochipsuseDMOSordouble-diffusedmetaloxidesemiconductoroutputstages.Supplyrailsare+/-60VDCmaxfortheTDA7293and+/-50VDCfortheTDA7294,transformersupplyrailsAC32V-0-32Vto35V-0-35V,recommendationis32V-0-32Vfor8ohmoperation.TheconversionratevalueofTDA7293isalso10V/us,butithasawidervoltagesupplyrange,andthehighestavailabledual50VDCpowersupply,whichmeansthatithasalargerdynamicrangeandhigheroutputpowerthanTDA7294.Indual40VDCpowersupply,anaverageoutputpowerof100Wcanbeachievedat8ohmload.Ofcourse,ifthevoltageisincreasedtodouble50V,orasmallerloadsuchas4ohm,therewillbegreateroutputpower,accordingtothecharacteristicsofTDA7293,whenselectingatransformer,dual28VACvoltagecanbeselected,sothevoltageafterrectificationandfilteringisabout40V,ofcourse,thevoltagecanalsobeincreased.Consideringthatthereisafluctuationinthegridvoltage,itisbesttobelessthanthemaximumvoltageof50V,sothatthecircuitcanworkinamorestablecondition.ProductManufacturerSTMicroelectronics(ST)groupwasestablishedinJune1988asaresultofthemergerofSGSMicroelectronicsofItalyandThomsonOfFrance.InMay1998SGS-ThomsonMicroelectronicschangeditsnametoSTMicroelectronicsLimited.Itistheworldslargestmanufacturerofdedicatedanalogchipsandpowerconversionchips,theworldslargestsupplierofindustrialsemiconductorsandset-topboxchips,andaworldleaderindiscretecomponents,mobilephonecameramodules,andautomotiveintegratedcircuits.ComponentDatasheetTDA7294Datasheet

IntroductionLM567isahigh-stabilitylow-frequencyintegratedphase-lockedloopdecoder.Duetoitsgoodnoisesuppressionabilityandcenterfrequencystability,itiswidelyusedinthedecodingofvariouscommunicationequipmentandthedemodulationcircuitofAMandFMsignals.LM567Imagesareforreferenceonly.LM567ToneDecoderCatalogIntroductionDocumentsandMediaPinConfigurationandFunctionsBasicParametersFeaturesApplicationsFunctionalBlockDiagramCircuitDiagramECCNUNSPSCProductManufacturerProductRangeOrdering&QuantityDocumentsandMediaComponentDatasheetsLM567(C)PinConfigurationandFunctionsThedatasheetprovidedaboveisforyourreference,sothatyoucanunderstandthephysicaldimensionsofallpackagesinmoredetail.Theconfigurationofall8pinsandthefunctionofeachpinareasfollows:PinConfigurationAndthefunctionofall8pinsandthefunctionofeachpinareasfollows:PinFunctionBasicParametersBrandNameTexasInstrumentsECCNCodeEAR99FactoryLeadTime1WeekHTSCode8542.39.00.01JESD-30CodeR-PDSO-G8JESD-609Codee3Length4.9mmManufacturerTexasInstrumentsManufacturerPartNumberLM567CMX/NOPBMoistureSensitivityLevel1NumberofFunctions1NumberofTerminals8OperatingTemperature-Max70CPackageBodyMaterialPLASTIC/EPOXYPackageCodeSOPPackageDescriptionSOP-8PackageEquivalenceCodeSOP8,.23PackageShapeRECTANGULARPackageStyleSMALLOUTLINEPartLifeCycleCodeActivePartPackageCodeSOICPbfreeCodeYesPeakReflowTemperature260℃PinCount8QualificationStatusNotQualifiedReachComplianceCodeCompliantRiskRank0.62RohsCodeYesSeatedHeight-Max1.75mmSupplyCurrent-Max15mASupplyVoltage-Nom5VSurfaceMountYESTelecomICTypeTONEDECODERCIRCUITTemperatureGradeCOMMERCIALTerminalFinishMatteTin(Sn)TerminalFormGULLWINGTerminalPitch1.27mmTerminalPositionDUALTime@PeakReflowTemperature-Max(s)NOTSPECIFIEDWidth3.91mmFeatures20to1FrequencyRangeWithanExternalResistorLogicCompatibleOutputWith100-mACurrentSinkingCapabilityBandwidthAdjustableFrom0to14%HighRejectionofOutofBandSignalsandNoiseImmunitytoFalseSignalsHighlyStableCenterFrequencyCenterFrequencyAdjustablefrom0.01Hzto500kHzApplicationsTheLM567tonedecoderisadevicecapableofdetectingwhetheraninputsignaliswithinaselectabledetectionrange.Thedevicehasanopencollectortransistoroutput,soanexternalresistorisrequiredtoreachtheappropriatelogiclevels.Whentheinputsignalisinthedetectionband,thedeviceoutputchangestotheLOWstate.TheinternalfreeoperatingfrequencyoftheVCOdefinesthecenterfrequencyofthedetectionband.AnexternalRCfilterisrequiredtoadjustthisfrequency.Thebandwidthinwhichthedevicewilldetectthedesiredfrequencydependsonthecapacityoftheloopfilterterminal.Usuallya1Fcapacitorisconnectedtothispin.LM567isgenerallyusedinthefollowingsituations:TouchToneDecodingPrecisionOscillatorFrequencyMonitoringandControlWideBandFSKDemodulationUltrasonicControlsCarrierCurrentRemoteControlsCommunicationsPagingDecodersFunctionalBlockDiagramCircuitDiagramThefollowingdescribestheclassiccircuitdiagramofthephase-lockedloopLM567usedincarriercommunicationapplications.Therearemanyapplicationsforit,butthethreecircuitsdescribedbelowhaveallbeentestedbypracticeforreferencebythosewholovecarriercommunication.ClassicCircuitDiagram(1)ClassicCircuitDiagram(2)ClassicCircuitDiagram(3)ECCNUNSPSCDescriptionValueECCNCodeEAR99HTSCode8542.39.00.01ProductManufacturerTexasInstrumentsInc.(TI)isanAmericantechnologycompanythatdesignsandmanufacturessemiconductorsandvariousintegratedcircuits,whichitsellstoelectronicsdesignersandmanufacturersglobally.ItsheadquartersareinDallas,Texas,UnitedStates.TIisoneofthetoptensemiconductorcompaniesworldwide,basedonsalesvolume.TexasInstrumentssfocusisondevelopinganalogchipsandembeddedprocessors,whichaccountsformorethan80%oftheirrevenue.TIalsoproducesTIdigitallightprocessing(DLP)technologyandeducationtechnologyproductsincludingcalculators,microcontrollersandmulti-coreprocessors.Todate,TIhasmorethan43,000patentsworldwide.ProductRangeDevicesBoardsDeveloperToolsARMPROCESSORSAUTOMOTIVEPRODUCTSIDENTIFICATIONSECURITYKinetisCortex-MMicrocontrollersIn-VehicleNetworkNFCLPCCortex-MMicrocontrollersMicrocontrollersandProcessorsRFIDAfterreadingtheblog,haveyoubetterunderstandLM567?IfyouarealsointerestedinhowtouseLM567totestthespeedofyourmotorcycle,youmaywishtobrowserighthererightnow!Finally,ifyouhaveanyquestionsaboutLM567,pleasedonothesitatetoleaveamessageinthecommentsectionbelow!IIntroductionLM567isatonedecodingphase-lockedloopintegratedcircuit.Itiscompactindesign,simpleincircuit,andhasawiderangeofapplications.However,ifusingimproperly,itwillbringtroublesindebugging.ThisblogintroducestheworkingprincipleandtipsabouthowtouseLM567tonedecoderforreadersreference.Figure1.LM567ToneDecoderCatalogIIntroductionIILM567InternalStructurePinFunctionIIILM567WorkingPrincipleApplicationIVTipsofUsingToneDecoderLM567Ordering&QuantityIILM567InternalStructurePinFunctionThenameofLM567isphase-lockedlooptonedecoder,itspackageformuses8-pindualin-line,itsinternalstructureandpinfunctionsareillustratedinFigure2.Itsinternalcircuitstructureiscomposedofquadraturephase,detector,phase-lockedloop,amplifier,etc.TheoperatingvoltagerangeofLM567is4.75-9V,theoperatingfrequencycanreach500KHz,andthestaticoperatingcurrentisonly8mA.Thepin③isthesignalinputterminal,whichrequirestheinputsignaltobegreaterthan25mV.Thepin⑧isthelogicoutputterminal.Itcanbeseenfromthefigurethatitisanopencollectortransistoroutput,whichallowsamaximumsinkcurrentof100mA.Theexternalresistanceandcapacitanceofpins⑤and⑥determinethecenterfrequencyf01/1.1RCofICinternalvoltagecontrolledoscillator.Pins①and②areusuallyconnectedtothegroundseparatelytoformanoutputfilternetworkandalooplow-passfilternetwork.Thecapacitorconnectedtopin②determinesthecapturebandwidth.Thelargerthevalueofthecapacitor,thenarrowertheloopbandwidthis.Figure2.TopViewofLM567IIILM567WorkingPrincipleApplicationWhenthetonedecoderLM567works,itsphase-lockedloopinternalcurrent-controlledoscillatorgeneratesanoscillationsignalofacertainfrequencyandphase.Thissignalissenttothequadraturephasedetectortogetherwiththesignalinputatpin③forcomparison.Whenthefrequencyofthesignalfallswithinagivenpassband,thephase-lockedlooplocksthissignal,andatthesametimetheinternaltransistoroftheLM567iscontrolledtobepoweredup,andtheoutputterminaloftheLM567outputslowlevel.The⑤pinofLM567outputstherectangularsignaloftheinternaloscillator,andthe⑥pinoutputsthesawtoothpulse.Thefrequencyofbothisthesameasthecenterfrequencyoftheinternaloscillator.The②pinistheoutputofthephase-lockedloopphasedetector.ThevoltageonisthesignalafterF/Vconversion.Ifthetonesignalisinputtothe②pin,thenthe⑤pinoutputstheFMsquarewavesignalmodulatedbythe②pininputsignal.FromthebasicfunctionofLM567,LM567canbeusedasanoscillator,modulatorordemodulator.Therefore,itcanbeusedasabasicdeviceinthecircuit.TheapplicationofLM567hasthefunctionofdecodingaspecificfrequencyintheinputsignal,anditiswidelyusedincommunication,remotecontrol,measurement,frequencymonitoring,etc.Figure3.LM567ToneDecoderIVTipsofUsingToneDecoderLM567AlthoughLM567hasaverywiderangeofapplications,ifitisnothandledproperlyduringdesignandapplication,itstillfailstoachievetheexpectedresults,andevenbringstroubletothedebuggingoraffectsthereliabilityoftheproduct.Therefore,itshouldbeconsideredfromthefollowingaspectswhenusingit:1.SetOperatingFrequencyandBandwidthofLM567AccuratelyandAppropriatelyWeknowthattheinternaloscillationfrequencyf0ofLM567canbepre-setwithintherangeof0.1KHzto500KHz,anditscorrespondingbandwidthcanalsobedeterminedasrequiredwithinthefieldrangeof7%f0to14%f0.Therefore,afterthedetectedsignalisdetermined,theinternaloscillationfrequencyf0ofLM567shouldbesettocoincidewiththecenterfrequencyofthemeasuredsignal,andthetimingcomponentsRandCconnectedwiththe5and6feetofLM567shouldbeusedwithhighprecision.Amongthem,thesettingofthecenterfrequencycanbedeterminedbytheresistancevalueofthetunerR.Whenadjusting,itisnecessarytopreventRshortcircuitoropencircuit,otherwisetheoutputlevelof⑧pinwillbelowlevelwhetherthereisinputsignalornot.Theexternalcapacitanceofthe②pinofLM567determinesthecapturebandwidth.Thesmallerthecapacity,thewiderthecapturebandwidth.However,thecapacitancecannotbereducedblindlytoincreasethebandwidth,soasnottoreducetheanti-interferenceabilityoreventriggerfalsely,whichaffectsthereliabilityoftheproduct.2.MaketheCenterFrequencyofthePassbandCoincidewiththeCenterFrequencyoftheOscillationAsMuchAsPossibleItshouldbenotedthatthecenterfrequencyofthepassbanddoesnotalwayscoincidewiththecenterfrequencyoftheoscillator,andsometimesitwilldeviateseverely.Thiswillinevitablycauseadecreaseinreliabilityandsensitivity.Therefore,measuresshouldbetakentomakethetwocenterscoincideasmuchaspossible.ThecircuitshowninFigure4canminimizethefrequencyoffsetofthetwocenters.Figure4.CircuitofLM5673.WorkingVoltageofLM567ShouldBeStableThestabilityoftheoperatingvoltageoftheLM567hasafixedresponsetothestabilityofthecenterfrequencyofthetonedecoder.4.AvoidMisoperationWhentheOutputTerminalisPoweredOnLM567outputsalowlevelatthemomentwhenthepoweristurnedon.Therefore,forsomeremotecontrolcircuits,itisnecessarytoaddaCRintegrationdelaycircuittotheoutputendtoavoiderroneousoperationwhenthepoweristurnedon.Thisisespeciallyimportantintheon-offcontrolcircuit.Afterreadingtheblog,haveyoubetterunderstandLM567?Finally,ifyouhaveanyquestionsaboutLM567,pleasedonothesitatetoleaveamessageinthecommentsectionbelow!

AIRMAX0S

IIntroductionWhentestingenvironmentalprotection,safety,andeconomicindicatorssuchasnoise,accelerationperformance,maximumspeed,andfuelconsumptionofmotorvehicles,itisnecessarytomeasureandcontrolthevehiclespeed.Mostexistingvehiclespeedmeasurementmethodsuseelectronictimingdevicesorstopwatchestomeasurevehicles.Thetimeittakestotravelafixeddistanceandthenfindtheaveragespeed.Generally,theprocessorandthedisplaypartoftheelectronictimingdevicearebasicallythesame,butthespeedsensorpartisdifferent,andthecharacteristicsofthesensordirectlyaffecttheaccuracyofthemeasurementresult.Atpresent,thecommonlyusedspeedsensorsincludepressuresensitivesensors,COMScamerasandparallellightsources.Theformerhasasimplestructure,butitiscumbersometolay,thesensoriseasilydamaged,andthesensitivityisreducedafterlong-termuse,whichaffectsthemeasurementresults.Thelatterhashighsensitivityandaccuratemeasurement.However,thecostistoohigh,involvesmoreequipment,andhashigherrequirementsfortheplacementofthelightsource.Consideringtheaboveproblems,itisafeasiblemethodtodesignanewinfraredspeedsensorusingLM567.Thesensorissmallinsize,lowincost,simpleinoperation,easytouse,hashighsensitivity,accuracy,stabilityandanti-interferenceability,andissuitableformeasuringtheaveragespeedofavehiclewithinafixeddrivingdistance.Figure1.LM567CatalogIIntroductionIIWorkingPrincipleofTraditionalSpeedMeasuringDevice2.1UsingPressureBeltRoadTester2.2UsingLaserRoadTesterIIIWorkingPrincipleofInfraredSpeedSensorBasedonLM5673.1InternalStructureandFunctionofLM5673.2PrincipleofInfraredSpeedMeasurementBasedonLM567IVConclusionOrdering&QuantityIIWorkingPrincipleofTraditionalSpeedMeasuringDeviceThefollowingusesthemeasurementofmotorcycleaccelerationnoiseasanexample,tointroducetheprinciplesandadvantagesdisadvantagesoftheconventionalspeedmeasuringdevicescurrentlycommonlyused.Figure1isasimplifiedlayoutofmotorcycleaccelerationnoisetest.2.1UsingPressureBeltRoadTesterForthespeedmeasurementmethodusingthepressurebeltroadtester,placethepressurebeltatAA,BB,CC,DDrespectivelyandstickthepressurebelttotheroadsurfacewell.ThedistancebetweenAAandBB,CCandDD(thatis,thespeedmeasurementzone)is1meter,andthepressurebeltandtheroadtesterareconnectedinsequencewithacable.WhenthevehiclepassesthepressurebeltatAA,thepressure-sensitivesensorinthepressurebeltistriggered,andthetriggersignalissenttotheroadtestertostartthetimingofitsinternaltimingdevice;WhenthevehiclepassesBB,atriggersignalisgeneratedagaintostopthetimingdevice.Usingtheinternalprocessoroftheroadtester,thetimetakentopassthedistancebetweenAAandBBisconvertedintovehiclespeedanddisplayedontheLCDscreen.Figure2.LayoutDiagramUsingPressureBeltRoadTesterSimilarly,avehiclespeedvaluecanbemeasuredbetweenCCandDDtomeettherequirementsofnoisemeasurement.Theworkingprincipleofthisspeedmeasurementmethodissimple,buttheequipmentismoretroublesometolay,andthesensoriseasilydamaged.Afterlong-termuse,thesensitivitywillbereduced,whichwillaffectthemeasurementresult.2.2UsingLaserRoadTesterForthespeedmeasurementmethodusingthelaserroadtester,fourparallellaserlightsourcesareplacedatfourpositionsofA,B,C,andD,andfourareplacedatfourpositionsofABCD.CMOScameraforreceivinglasersignals.Thelightsourcecanbeadjustedsothatthelaserlightemittedisalignedwiththecenterofthecamera,andthecameraisconnectedtotheroadtesterinsequence.WhenthevehiclepassesAA,thelightisblocked,andthecamerageneratesatriggersignaltomaketheinternaltimingdeviceoftheroadtesterwork;WhenthevehiclepassesBB,atriggersignalisgeneratedagaintostopthetimingdevice,andtheinternalprocessoroftheroadtesterisusedtoconvertthetimespentthroughthedistancebetweenAAandBBtothevehiclespeedanddisplayitontheLCDscreen.on.Figure3.LayoutDiagramUsingLaserRoadTesterSimilarly,aspeedvaluecanbemeasuredbetweenCCandDD.Thesensitivityandmeasurementaccuracyofthisspeedmeasurementmethodareveryhigh,buttheoperationisextremelyinconvenient.Notonlydoeseachlaserlightsourcerequireanindependentpowersupply,butalsothelasersignalmustbedirectedtothecenterreceivingpointofthecamera,whichplaceshighrequirementsontheplacementofthelightsource,otherwisethesensorwillbedifficulttoworkproperly.IIIWorkingPrincipleofInfraredSpeedSensorBasedonLM567Thisblogusesaphase-lockedloopaudiodecodingchipLM567todesignanewinfraredspeedsensor.Itscircuitdiagramandworkingprincipleareasfollows.3.1InternalStructureandFunctionofLM567LM567isspeciallyusedtodemodulateasingletonefrequencymodulationsignal,anditsoperatingfrequencycanbeashighas500kHz.Itiswidelyusedinindustrialautomaticcontrol,remotecontroltelemetry,securityalarmandotherfields.LM567ismainlycomposedofquadraturephasedetector,phase-lockedloopandamplifier.ItsinternalstructureisshowninFigure2.Pins5and6ofLM567areexternallyconnectedwithtimingresistorsandcapacitorsR,C.RandCdeterminethecenterfrequencyf0ofthephase-lockedloopinternalvoltagecontrolledoscillator,thatis,f0.ResistorRisconnectedbetweenpins5and6,ofwhichpin6isgroundedthroughcapacitorC(Uss).IfRis2~20k,theLM567canextractthetonesignalintherangeof0.01~500kHz.Pins1and2ofLM567arerespectivelyconnectedtothegroundwithacapacitortoformanoutputfilternetworkandaphase-lockedlooplow-passfilternetwork.ThecapacityoftheexternalcapacitorC2onpin2determinesthecapturebandwidthofthephase-lockedloop,anditssizeisBw1070.Uinistheeffectivevalueofthesinewavesignalvoltageinputfrompin3,andrequiresUin25mV,generallybetween100~200mV.TheexternalcapacitorC1ofpin1istheoutputfiltercapacitorofthequadraturephasedetector,anditscapacityismorethantwicethecapacityofthecapacitorC2connectedtopin2,whichshouldsatisfyC12C2.Figure4.TopViewofLM567(1)UsingLM567asFrequencyModulatorPin2isconnectedtotheinputofthelow-passfilterofthephase-lockedloop.Themodulatedsignaladdedfrompin2isfilteredbyalow-passfiltertoremoveout-of-bandnoiseandnoise,andthenaddedtothecenterfrequencyf0ofthevoltage-controlledoscillatorforfrequencymodulation,andthenthepin5outputstheFMsignal.Thecenterfrequencyf0oftheFMsignalisdeterminedbytheparametersoftheRCresistor-capacitornetworkconnectedtopins5and6.WhenLM567isusedasthefrequencymodulationcircuit,onlyitsinternalphase-lockedlooplow-passfilterandvoltage-controlledoscillatorareused.ChangingtheparametervalueoftheRCnetworkcanrealizemodulationtodifferentfrequencies.(2)UsingLM567asFrequencyDemodulatorThemodulatedsignalisinputfrompin3.Whenthecenterfrequencyoftheinputsignalisequaltothecenterfrequencyf0ofthevoltage-controlledoscillatorintheLM567,thelow-passfilter(pin2)oftheloopoutputsthedemodulatedsignal.3.2PrincipleofInfraredSpeedMeasurementBasedonLM567ThecircuitdiagramoftheinfraredspeedsensorbasedonLM567isshowninFigure3.TheinternaloscillatoroftheLM567providesasquarewavesignaltodrivefourLEDstoemitinfraredlight,anditsfrequencyisdeterminedbyR2andC4.Figure5.CircuitDiagramofInfraredSpeedSensorPlacethefoursensorsinthefourpositionsA,B,C,andDinFigure1.Whenthevehiclepassesthesensor,theinfraredraysemittedbytheLEDarereflectedbythevehiclebody.ThephotosensitivetubeQ1receivesthereflectedlight,isamplifiedbythetransistorandconvertedintoavoltagesignal,andissenttotheinternalphasedetectoroftheLM567forsynchronousdemodulation,andthenconvertedintoadigitalsignalbythecomparatorinsidetheLM567andoutputfrompin8.Theoutputsignalistransmittedtotheroadtester,whichtriggersthetimingdeviceintheroadtestertostarttiming.Similarly,whenthevehiclepassesthesensoratpointB,atriggersignalisgeneratedtostopthetimingdeviceandpasstheroadtester.TheinternalprocessoroperatestoobtainthespeedofthevehicleasitpassesAAandBB.LM567isaphase-lockedloopaudiodecodingcircuit.Inthecircuit,itisusedforfrequencyselection,thatis,thecircuitoutputslowlevelonlywhenthefrequencyofthe3-pininputsignalisconsistentwiththefrequencyoftheLM567internaloscillator,otherwisetheoutputishigh.Level.Inotherwords,onlywhenthereflectedinfraredlightreceivedbyQ1comesfromtheLEDinitsowncircuit,theLM567willoutputatriggersignalfromhightolowtotheroadtester.Thebiggestfeatureofthiscircuitistorealizetheautomaticsynchronizationoftheinfraredemissionfrequencyandtheworkingfrequencyofthereceivingcircuit;Thatis,thereisnospecialpulsegeneratingcircuitintheinfraredtransmittingpart,andthepulseisdirectlyintroducedfromthedetectioncircuitofthereceivingpart(LM567phase-lockedcenterfrequencysignal).Inthisway,thewiringanddebuggingworkissimplified,avoidinginconsistenttransmissionandreceptionfrequenciescausedbychangesinthesurroundingenvironmentandcomponentparameters,eliminatingmutualinterferencebetweenadjacentsensors,andgreatlyenhancingcircuitstabilityandanti-interferencecapabilities.IVConclusionTheinfraredspeedsensordesignedbasedontheLM567modulationanddemodulationfunctionrealizestheautomaticsynchronizationoftheinfraredtransmissionfrequencyandtheworkingfrequencyofthereceivingcircuit.Inaddition,ithasthecharacteristicsofstronganti-interferenceabilityandstability,lowcostandsimplestructure.Therefore,itcanbewidelyusedtomeasuretheaveragespeedofvehiclessuchasautomobilesandmotorcycles.Figure6.LM567Afterreadingtheblog,haveyoubetterunderstandLM567?Finally,ifyouhaveanyquestionsaboutLM567,pleasedonothesitatetoleaveamessageinthecommentsectionbelow!TheLM2940isacommonlow-dropout(LDO)linearregulator.ThisisacomprehensiveintroductiontoLM2940voltageregulator,fromitspinout,feature,parametertoitsapplication,itsdifferencebetweenLM7805andmore.CatalogLM2940DescriptionLM2940PinoutLM2940FeaturesLM2940ParametersLM2940EquivalentLM2940VSLM7805LM2940TypicalApplicationLM2940PackageLM2940ApplicationComponentDatasheetLM2940DescriptionTheLM2940isacommonlow-dropout(LDO)linearregulator.Thedropoutvoltageofaregulatoristhevoltagerequiredbetweentheinputandtheregulatedoutputvoltage.Theregulatorwastesthisvoltage(multipliedbycurrent),sothelowerthedropoutonalinearregulator,themoreefficientitis.ThismeansthattheLM2940,witha5Vdropoutat1amp,canbeusedwitha6voltwallwarttoprovidearegulated5Voutput.Thisalsomeansthattheregulatorwilloperateatamuchlowertemperaturethanastandard7805,whichwouldrequireamuchhigherinputvoltage(around7.5volts)foraregulated5Voutput.LM2940PinoutLM2940voltageregulatorLM2940PinoutPinNo.PinNameDescription1VinA(+ve)voltageisgivenasinputtothispin.2GNDCommontobothInputandOutput.3VoutOutputregulated12VistakenatthispinoftheIC.LM2940FeaturesInputVoltageRange=6Vto26VDropoutVoltageTypically0.5VatIOUT=1AOutputCurrentinExcessof1AOutputVoltageTrimmedBeforeAssemblyReverseBatteryProtectionInternalShortCircuitCurrentLimitMirrorImageInsertionProtectionP+ProductEnhancementTestedLM2940ParametersOutputoptionsFixedOutputIout(Max)(A)1Vin(Max)(V)26Vin(Min)(V)6Vout(Max)(V)15Vout(Min)(V)5Fixedoutputoptions(V)5,8,9,10,12,15Noise(uVrms)150Iq(Typ)(mA)10ThermalresistanceJA(C/W)23Loadcapacitance(Min)(F)22RatingCatalogRegulatedoutputs(#)1Features-Accuracy(%)2PSRR@100KHz(dB)48Dropoutvoltage(Vdo)(Typ)(mV)500Operatingtemperaturerange(C)-40to125,-40to85LM2940EquivalentTheequivalentforLM2940isLM7805.LM2940VSLM7805TheLM7805isapopularlinearvoltageregulatorbecauseitrequiresnoadditionalcomponentstooperate.Itisaverylow-costcomponent.Becauseofitscharacteristics,itreducestheoutputvoltageattheexpenseofheatdissipation,makingitinefficient.TheLM7805requiresaminimuminputvoltageof7.3Vtofunctionproperly.Itcanhandleamaximumcurrentof1A.Somemodelscanhandleupto1.5A.Itisrecommended,andinsomecasesrequired,tousecapacitorstoreduceoreliminatetheeffectsofthefrequenciesintroducedbytheotherelementsofthecircuit.Theyalsohelptoreducetheimpactofpeakconsumption.WhiletheLM2940isfromadifferentgeneration,butitspinisstillcompatiblewiththeLM7805.ItisaLow-dropout(LDO)LinearRegulatorthatismoreefficientthantheLM7805,butitwillrequirecapacitors.ThemaindifferencebetweenLM2940andLM7805isthatthemaximumoutputcurrentofLM2940is1A.ThemaximumoutputcurrentofLM7805is1.5A.Othersareveryclose,soifthecircuitonlyrequires1Aorbelow,LM2940canbeusedinsteadofLM7805.Whatsmore,the7805isexpendingtheexcesspowerasheat.Whichisverylossyespecialyifyourprojectusesbatteries.Theotherchipisabuckconverterissoitapproaches90%efficiencybyswitchingsothereisnowasteheat,thatswhyeventhoughLM7805ischeaperandeasiertousebuttheresstillalotofpeoplewouldgoforLM2940.LM2940LM7805SchematicComparisonLM2940SchematicLM7805SchematicLM2940TypicalApplicationLM2940PackageLM2940ApplicationPostregulatorforswitchingsuppliesLogicpowerSuppliesIndustrialInstrumentationComponentDatasheetLM2940DatasheetS8050isalow-powerNPNsilicontubewithamaximumcollector-base(Vcbo)voltageof40Vandacollectorcurrent(Ic)of0.5A.S8050isoneofthemostcommonlyusedsemiconductortransistormodelsincircuithardwaredesign.Name:S8050Type:NPNDissipatedpower:0.625W(SMD:0.3W)Collectorcurrent:0.5ABasevoltage:40VCatalogS8050PinoutS8050CircuitS8050ApplicationS8050FeaturesS8050AdvantageS8050AlternativesS8050EquivalentsWhereHowtouseS8050HowtoSafelyLongRunS8050inCircuitS8050PinoutPinNumberPinNameSymbolDescription1EmitterECurrentDrainsoutthroughemitter2BaseBControlsthebiasingoftransistor3CollectorCCurrentflowsinthroughcollectorS8050ApplicationAudioamplificationcircuitsClassBamplifiersPushpulltransistorsCircuitswherehighgainisrequiredLowsignalapplicationsS8050FeaturesLowVoltage,HighCurrentNPNTransistorSmallSignalTransistorMaximumPower:2WattsMaximumDCCurrentGain(hFE)is400ContinuousCollectorcurrent(IC)is700mABase-EmitterVoltage(VBE)is5VCollector-EmitterVoltage(VCE)is20VCollector-BaseVoltage(VCB)is30VHighUsedinpush-pullconfigurationdoeClassBamplifiersAvailableinTo-92PackageNote:CompleteTechnicalDetailscanbefoundattheS8050datasheetgivenattheendofthispage.S8050AdvantageS8050npntransistorS8050isaNPNtransistorhencethecollectorandemitterwillbeleftopen(Reversebiased)whenthebasepinisheldatgroundandwillbeclosed(Forwardbiased)whenasignalisprovidedtobasepin.Ithasamaximumgainvalueof400;thisvaluedeterminestheamplificationcapacityofthetransistornormallyS8050.Sinceitisveryhighitisnormallyusedforamplificationpurposes.However,atanormaloperatingcollectorcurrentthetypicalvalueofgainwillbe110.ThemaximumamountofcurrentthatcouldflowthroughtheCollectorpinis700mA,hencewecannotdriveloadsthatconsumemorethan700mAusingthistransistor.Tobiasatransistorwehavetosupplycurrenttobasepin,thiscurrent(IB)shouldbelimitedto5mA.Whenthistransistorisfullybiasedthenitcanallowamaximumof700mAtoflowacrossthecollectorandemitter.ThisstageiscalledSaturationRegionandthetypicalvoltageallowedacrosstheCollector-Emitter(VCE)orCollector-Base(VCB)couldbe20Vand30Vrespectively.Whenbasecurrentisremovedthetransistorbecomesfullyoff,thisstageiscalledastheCut-offRegion.S8050Alternatives2N3904,2N3906,2N2369,2N3055,S9014,MPSA42,SS8050,BC547S8050Equivalents2N5830,S9013S8050CircuitThisisavideointroducingtransistorsstereoamplifierS8050andS8550.WhereHowtouseS8050S8050transistorisageneral-purposetransistor,itisaperfecttransistortoperformsmallandgeneraltasksinelectroniccircuits.Youcanuseitasaswitchinelectroniccircuitstoswitchonloadsunder700mA.700mAisenoughtohandlevarietyofloadsforexamplerelays,LEDs,bulbsetc.Itcanalsobeusedasamplifierinsmallamplificationstagesorasaseparatesmallsignalamplifier.HowtoSafelyLongRunS8050inCircuitTosafelyrunS8050transistorinyourcircuitorelectronicprojectsdonotoperatethistransistorfromvoltagehigherthan20Vanddonotoperateanyloadmorethan700mAor0.7A.Useasuitablebaseresistorwhichwilllimitsthebasecurrenttoitsrequiredlevel.Donotexposeittoheatover150centigradeandbelow-60Centigrade.

AIRMAX0S

LM3914isamonolithicicthatsensesanalogvoltagelevelsanddrives10LEDs,providingalinearanalogdisplay.Asinglepinchangesthedisplayfromamovingdottoabargraph.ThisisanoverviewofLM3914dot/bardisplaydriver,wewillprovidetheinformationofitspinout,datasheet,parameter,andwherehowtousethisdeviceandsomuchmore.Top5electronicsProjectsusingLM3914-15IC|lm3914lm3915circuitsCatalogLM3914DescriptionLM3914PinoutLM3914FeaturesLM3914ParameterLM3914EquivalentWheretouseLM3914ICHowtouseLM3914ICLM3914CircuitLM3914PackageLM3914ApplicationComponentDatasheetLM3914DescriptionTheLM3914isamonolithicintegratedcircuitthatsensesanalogvoltagelevelsanddrives10LEDs,providingalinearanalogdisplay.Asinglepinchangesthedisplayfromamovingdottoabargraph.CurrentdrivetotheLEDsisregulatedandprogrammable,eliminatingtheneedforresistors.Thisfeatureisonethatallowsoperationofthewholesystemfromlessthan3V.TheLM3914isveryeasytoapplyasananalogmetercircuit.A1.2Vfull-scalemeterrequiresonly1resistorandasingle3Vto15Vsupplyinadditiontothe10displayLEDs.Ifthe1resistorisapot,itbecomestheLEDbrightnesscontrol.Thesimplifiedblockdiagramillustratesthisextremelysimpleexternalcircuitry.Wheninthedotmode,thereisasmallamountofoverlaporfade(about1mV)betweensegments.ThisassuresthatatnotimewillallLEDsbeOFF,andthusanyambiguousdisplayisavoided.Variousnoveldisplaysarepossible.TheLM3914isratedforoperationfrom0Cto+70C.TheLM3914N-1isavailableinan18-leadPDIP(NFK)package.LM3914PinoutLM3914LM3914PinoutPinNumberPinNameDescription1and10to18LED1,LED2,LED3.....LED10The10LEDswhichhastobecontrolledisconnectedtothesepins2V-/GroundGroundpinoftheIC3V+/VccSupplyVoltage(3-18)V4RLOLowlevelvoltageforpotentialdivider5SignalAnalogsignalInputpinbasedonwhichtheLEDiscontrolled.6RHIHighLevelvoltageforpotentialdivider7REFOUTOutputReferenceVoltageforLEDcurrentlimiting8REFADJAdjustpinforvoltagereference9ModeSelectbetweenDot/BarModeLM3914FeaturesAnalogControlledLEDDriverICNumberofcontrollableLEDs:10OperatingVoltage:3Vto18VInputAnalogvoltagerange:1.2Vto12VLEDsinkcurrent:2mAto30mA(programmable)BothDot/BarmodeavailableCanbecascadedtocontrolupto100LEDsAvailablein18-pinDIP,PLCCpackageItcandriveLCDs,LEDsotherwisevacuumfluorescents.Thedototherwisebotdisplaymodecanbeselectedbytheuserexternally.Itcanbeexpandableupto100displays.LM3914ParameterManufacturer:TexasInstrumentsSeries:-Packaging:TubePartStatus:ObsoleteDisplayType:LEDLCDVacuumFluorescent(VF)Configuration:Dot/BarDisplayInterface:-DigitsorCharacters:10StepsCurrent-Supply:6.1mAVoltage-Supply:3V~20VOperatingTemperature:0C~70CMountingType:ThroughHolePackage/Case:18-DIP(0.3007.62mm)SupplierDevicePackage:18-PDIPBasePartNumber:LM3914LM3914EquivalentLM3914EquivalentLEDDriver:LM3916AlternativeLEDDriverICs:CD4511,MAX7219,CD4054WheretouseLM3914ICTheLM3914isananalogcontrolledLEDdriverIC,whichmeansthatitcancontrol(turnonoroff)10LEDlightsusingananaloginputvoltage.Thisintegratedcircuiteliminatestheneedforamicrocontrollerandprogramming,aswellasthehardwarerequiredtocontroltenLEDs.Theanaloginputvoltagecanrangefrom3Vto18V,andtheLEDcurrentcanbecontrolledwithasingleresistoronpin7.(RefOut).TheICalsohastwooperatingmodes:DOTmodeandBARmode,andupto100LEDscanbecontrolledbycascadingmultipleICs.TheseICsarecommonlyusedinvisualalarmsandothermetering/monitoringapplicationsbecausetheLEDscanbecontrolledwithoutflickeringandflawlesslywithequalbrightness.So,ifyourelookingforanICtopoweryourbarLEDlightsoranother10-LEDsequence,thisICmightbeofinteresttoyou.HowtouseLM3914ICThebenefitofusingLM3914isthatitrequireslittlehardwareandissimpletosetup.Simplyconnectthe10LEDstotheIC,setthereferencevoltagesfortheinputvoltage,andlimitthecurrentthroughtheLED,andweredone.ThecircuitbelowisanexampleofanLM3914applicationcircuit.SimplyconnecttheV+andV-topowertheIC,andtheanalogsignalvoltageisconnectedtopin5.Inthiscase,weused9VtopowertheICandmonitorananalogyvoltagerangingfrom0to5V.AlwayskeepinmindthatthevoltageusedtopowertheIC(inthiscase,9V)shouldbeatleast1.5Vhigherthanthemonitoringvoltage(here5V).Becausewearemonitoring0-5Vhere,wesetthelowreferencevoltage(pin4)to0Vandthehighreferencevoltage(pin6)to5V.Asyoumayhavenoticed,weconnectedalltenLEDsdirectlytotheICwithoutusinganycurrentlimitingresistors.ThisisbecausetheIChasaninternalcurrentlimiterandthecurrentvaluecanbesetusingthepinVRO(pin7).Thecurrentcalculationformulasaregivenbelow,whereIisthecurrentflowingthrougheachLEDandRListheresistorconnectedtopin7.I=12.5/RLIntheprecedingexample,weuseda470ohmresistorasRl,sothecurrentthrougheachLEDwillbearound25mA;youcanchangethevalueasneeded.Also,thecathodeoftheLEDisconnectedtotheIC,whiletheanodeisconnectedto+5V.ThisisduetothefactthattheICoutputpinscanonlysinkcurrentandnotsourceit.Theintegratedcircuit(IC)canoperateintwomodes:dotmodeandbarmode.Indotmode,themodepin(pin9)mustbeleftfloating;inthismode,basedontheinputvoltage,onlyoneLEDwillbeturnedon.InBarmode,connectthemodepin(pin9)toV+,andtheLEDwillturnonandoffsequentiallybasedontheinputvoltage.Boththemodesareshowninthegiffileabove.LM3914CircuitThecircuitdiagramforICLM3914isshownbelow.Thecircuitcanbeconstructedusingbothbasicelectricalandelectroniccomponents.TheICLM3914isacriticalcomponentofthiscircuit.AnalarmdrivingswitchforoverrangecanbeconnectedtoabartypeLMseriesLEDdrivingdisplaycircuitinthefollowingcircuit.Thiscircuitissuitableforbardisplays.LM3914BasedAlarmDriverCircuitThecircuithereemploysaPNPtransistor,denotedbyQ1.ThistransistorcanbeconnectedbetweentheLEDpositiveandnegativeterminals,andthebaseterminalofthetransistorisconnectedtotheICspin-10todrivetheLED10.Inseries,analarmunitisconnectedtothetransistorscollectorterminal.Normally,Q1transistor,LED10,andthealarmunitareallturnedoff;however,ifLED10isactivated,itpullsQ1transistorthroughresistorR2andthusactivatesthealarmunit,indicatingthattheconditionisoutofrange.Intheabovecircuit,analarmunitgeneratesanacousticalarmsoundusingapiezosirenunit,otherwiseagatedastableswitchunitthatcontinuouslyactivatestheLEDbrightnessbetweenhighandlowlevelsbeneaththeover-rangestate,oracombinationofboth.Ifdesired,theunitcanbeswitchedtoanyoftheLEDdisplays,andthealarmwillsoundifthatoranyotherhighLEDisenergized.LM3914PackageLM3914ApplicationBatteryMeterforRobotMonitoringof12VCarBatteryTesterCircuitforSoilMoistureMonitoringofLeadAcidBatteryChargerChargeMonitoringCircuitforAtmosphericKitchenExhaustFanforControllingTemperatureMeterCircuitforTemperatureDigitalgaugesElectronicdisplaysLow-costmonitordevicesCrudeBatterylevelindicatorsFadebarsComponentDatasheetLM3914DatasheetIDescriptionThisblogusestheuniversalintegratedchipTL494toconvertanalogsignalsintoPWM(pulsewidthmodulation)signals.Intheoutputpart,N-channelMOSFETandP-channelMOSFETareusedtoformaswitchingpoweramplifier.CatalogIDescriptionIIIntroduction2.1SwitchingPowerAmplifierOverview2.2TL494IntroductionIIISchemeDesign3.1DutyCycleAdjustmentCircuit3.2InputSignalCompressionCircuit3.3MOSFETDriveCircuit3.4WorkingPrincipleofOutputPartIVExperimentalResultsVConclusionFAQOrdering&QuantityIIIntroduction2.1SwitchingPowerAmplifierOverviewWiththerapiddevelopmentofhigh-speedpowerMOSFETproductiontechnology,theoperatingfrequencyofMOSFETisgettinghigherandhigher,thedrivingmethodisgettingsaferandthepriceisgettinglower.Therefore,alargenumberofswitchingpoweramplifiersappliedtovarioushouseholdappliancesandindustrialalarmshaveappearedonthemarketinrecentyears.Comparedwiththelinearpoweramplifier,althoughthecircuitoftheswitchingpoweramplifierisslightlymorecomplicated.Butitisveryefficientandcanreducethesizeoftheheatsink,evenwithoutusingtheheatsink.Therefore,thevolumeoftheproductcanbegreatlyreduced.2.2TL494IntroductionTL494isaswitchingpowersupplypulsewidthmodulation(PWM)controlchip.Formanyyears,asthecheapestdouble-endedPWMchip,TL494hasbeenwidelyusedindouble-endedtopologiessuchaspush-pullandhalf-bridge.Becauseofitsloweroperatingfrequencyandsingle-endedoutputportcharacteristics.Itisoftenusedwithpowerbipolartransistors(BJT).IfusedwithpowerMOSFET,anexternalcircuitisrequired.TL494worksinawidevoltagerangefrom7Vto40V,withamaximumoperatingfrequencyof200kHz,withtheinternalsawtoothgenerator,PWMgenerator,andlagtimeadjustmentfunctions.IIISchemeDesignFigure1isablockdiagramofaTL494-basedswitchingpoweramplifier.Thekeytothecircuitdesignisthedutycycleadjustmentcircuit,inputsignalcompressioncircuit,andMOSFETdrivecircuit.Figure1.TL494SwitchingPowerAmplifier3.1DutyCycleAdjustmentCircuitThedutycycleisthekeytoimprovingvoltageutilizationduringPWMsignalmodulation.BecauseTL494isanintegratedchipforswitchingpowersupply.Therefore,theminimumlagtimeissetto0.1Vinternally.Themaximumdutycycleisapproximately96%attheoutputofthetransmitterstage.Figure2showstheinputpartandpartofthecircuitforPWMsignalmodulation.Figure2.SignalInputsectionandPWMGeneratorInFigure2,whenC4=1000pFandR4=24k,theoperatingfrequencyisabout78kHz.IfthereisnodutycycleadjustmentcircuitD8,D17,R23,becausethecomparisonpointoftheinternaldelaytimecomparatoris0.1V.Sotheminimumon-timeisabout1.52s,andtheminimumdutycycleisD=1.52/1312%.Therefore,thevoltageutilizationratewilldecreaseduringPWM.IfD8,D17,andR23areused,a0.82VbiasvoltagewillbegeneratedatthepointEofthecapacitorC4forthesawtoothwavegeneration,andthestartingpointofthesawtoothwavewillbeincreasedfrom0Vto0.82V.Therefore,theon-timeisreducedto0.64s,andtheminimumdutycycleisreducedtoD=0.64/134.9%.Thiscansignificantlyimprovethevoltageutilization.Figure3istheoutputwaveformwhenthereisnodutycycleadjustmentcircuit.Figure4istheoutputwaveformwhenthereisadutycycleadjustmentcircuit.Figure3.OutputWaveformwithoutDutyCycleAdjustmentCircuitFigure4.OutputWaveformwithDutyCycleAdjustmentCircuit3.2InputSignalCompressionCircuitBecausetheinputsignalofthealarmhasalargevariationrange,itisnecessarytocompressthesignalwithalargeamplitudeaccordingtoacertainratio.InFigure2,R6,R16,D10,D11constitutetheinputsignalcompressioncircuit,anditskeyistousetheinputcharacteristicsofthediode.Figure5showsitsinputcharacteristics.Amongthem,D10andD11areconnectedinparalleltocompresssignalsinbothpositiveandnegativedirections.Figure5.OutputCharacteristicsofInputSignalCompressionCircuitThecompressionratiodependsonthevaluesofR6andR16.Thelargerthevalue,thelargerthecompressionratio.ByadjustingthevaluesofR6andR16,thechangerangeofthecompressedsignalissetto-0.82V~0.82V.Theamountofchangeis1.64V.WecanseeFigure4,thesawtoothvoltagevariationrangeis0.82V~3.25V.SotheoutputsignalvariationrangeoftheTL494internalerroramplifieris2.43V.ThegainoftheinternalerroramplifierdependsonR7andR20.Byadjustingtheirvalues,whentheamountofchangeofthecompressedsignalis1.64V,theoutputsignalchangerangeoftheinternalerroramplifiercanbesetto2.43V.Sincemostalarmsusetweeters,thebasswithalargeamplitudecanbegreatlyreduced.3.3MOSFETDriveCircuitP-channelMOSFETusesIRF9540.Ithasthecharacteristicsofthemaximumoperatingvoltageof100V,themaximumoperatingcurrentof18A,andsaturationwhenVGSvoltageis5V~15V.N-channelMOSFETusesIRF540.Ithasthecharacteristicsofthemaximumoperatingvoltageof100V,themaximumoperatingcurrentof27A,andsaturationwhenVGSvoltageis5V~15V.ThedrivingtransistorQ3adoptsNPNtypeC8050,andQ7adoptsPNPtypeC8550.Bothofthesetwodrivetransistorshavethecharacteristicsofamaximumoperatingvoltageof30V,amaximumoperatingcurrentof1A,andaVBEof12V.Figure6showstheMOSFETdrivecircuit.Figure6.MOSFETDriveCircuitFigure7showstheMOSFETdrivingprinciplewaveform.WhenthepulsevoltageatpointAislow,thecurrentflowsthroughthereversebiasoftheZenerdiodeD7andthetransistorQ3toformaVGSvoltage,andQHisturnedon.WhenthepulsevoltageatpointAishigh,thecurrentflowsthroughthereversebiasoftheZenerdiodeD9andthetransistorQ7toformaVGSvoltage,andQListurnedon.Inaddition,Figure7alsoshowsdetaileddrivingwaveforms.lWhenthepulsevoltageislow,thevoltageislowerthanVLtomakeQHturnon.lWhenthepulsevoltageishigh,itsvoltageishigherthanVHtomakeQLturnon.IttakesacertainamountoftimetochangefromVLtoVH.Atthistime,QHandQLwillbecutoffatthesametime.Therefore,thepulsechangeprocessisverysafe.Figure7.MOSFETDrivingPrincipleWaveformTheVGSofQHandQLisdeterminedbythefollowingformula:Where:VGSisthedrivingvoltageofMOSFET;VCisthepowersupplyvoltage;VDistheregulatedvoltageofZenertubesD7andD9(usuallythesameZenertubeisused);VBEisthecounterbreakdownvoltageofC8050andC8550.Figure8isthemeasureddrivewaveform.Whenthepulsevoltagechangesfromlowtohigh,thetimeforQHandQLtocutoffatthesametimeisabout100~300ns.Figure8.MeasuredDriveWaveform3.4WorkingPrincipleofOutputPartAsshowninFigure6,theoutputpartconsistsofQH,QLandL3,C8,C5,andC7.TheoutputvoltageistransmittedtotheloadafterfilteringhighfrequencywavesthroughL3andC8.Generally,anelectrolyticcapacitorisusedattheoutputend,butthiscircuitusesC5andC7toformahalfbridge,andthenconnectthemidpointtotheload.Theadvantageofthisconnectionmethodisthatthetwocapacitorsarenotonlythetransmissionpathoftheoutputsignal(thecapacitancevalueistheparallelvalueofthetwocapacitors),butalsohasafilteringeffectonthepowersupply(thecapacitancevalueistheseriesvalueofthetwocapacitorsatthistime),andreducetheinternalpressureofthecapacitorbyhalf.IVExperimentalResultsTable1showsthequiescentcurrentwhentheinputvoltageis35Vandtheoperatingfrequencyis78kHzwhenusingdifferentvoltageregulatordiodes.ItcanbeseenfromTable1:Whenthevoltageregulationvalueofthevoltagestabilizingdiodeis0V,5V,thedistancebetweentheconductionpointsofVLandVHistooclose,andtheconductiontimeistoolong,andthereisalargerstaticcurrent.Althoughthecurrentisrelativelysmallat20V,theMOSFETgeneratessevereheat.AscanbeseenfromTable1,whentheoperatingvoltageis35V,theselectionrangeoftheZenerdiodeis7.5V~15V.VConclusionTheexperimentalresultsshowthatthePWMsignalofTL494isusedforN-channelMOSFETandP-channelMOSFETtoformaswitchingpoweramplifierwithauniquedrivingmodetoovercometheshortcomingsofsimultaneousconductionoftwopowerMOSFETs.Notonlythat,italsohasidealdrivewaveforms,efficiencygreaterthan95%,goodbandwidthandlowprice,whichfullymeetstherequirementsofindustrialalarms.Andunder18Woutputpower,comparedwiththepoweramplifiercomposedofTDA7481,thereisnotmuchdifference,andthereisbasicallynoheatingphenomenon,andtheheatsinkcanberemoved.Ifyouwanttogetmoreoutputpower,youonlyneedtoincreasetheworkingvoltagetomorethan35VandfitaproperZenerdiode.FAQWhatisTL494?TL494isaPWMcontrollerICusedforpowerelectronicscircuits.Itcomprisesofon-chiptwoerroramplifiersanoscillatorwithadjustablefrequencyfeature,anoutputflip-flophavingpulsesteeringcontrol,andanoutputcontrolcircuitwithfeedback.WhatisthedetaileddescriptionofTL494?TheTL494deviceincorporatesallthefunctionsrequiredintheconstructionofapulse-width-modulation(PWM)controlcircuitonasinglechip.Designedprimarilyforpower-supplycontrol,thisdeviceofferstheflexibilitytotailorthepower-supplycontrolcircuitrytoaspecificapplication.TheTL494devicecontainstwoerroramplifiers,anon-chipadjustableoscillator,adead-timecontrol(DTC)comparator,apulse-steeringcontrolflip-flop,a5-V,5%-precisionregulator,andoutput-controlcircuits.Theerroramplifiersexhibitacommon-modevoltagerangefrom0.3VtoVCC2V.Thedead-timecontrolcomparatorhasafixedoffsetthatprovidesapproximately5%deadtime.Theon-chiposcillatorcanbebypassedbyterminatingRTtothereferenceoutputandprovidingasawtoothinputtoCT,oritcandrivethecommoncircuitsinsynchronousmultiple-railpowersupplies.Theuncommittedoutputtransistorsprovideeithercommon-emitteroremitter-followeroutputcapability.TheTL494deviceprovidesforpush-pullorsingle-endedoutputoperation,whichcanbeselectedthroughtheoutput-controlfunction.Thearchitectureofthisdeviceprohibitsthepossibilityofeitheroutputbeingpulsedtwiceduringpush-pulloperation.WhatareTL494productfeatures?CompletePWMPower-ControlCircuitryUncommittedOutputsfor200-mASinkorSourceCurrentOutputControlSelectsSingle-EndedorPush-PullOperationInternalCircuitryProhibitsDoublePulseatEitherOutputVariableDeadTimeProvidesControlOverTotalRangeWhatisPWMIC?TheTL494fixedfrequencyPWMControllercanbeusedforDCtoDCconversionregardlessofbuckorboosttopology....ThisICfeatureanoutputcontrolcircuit,aflipflop,adeadtimecomparator,twodifferenterroramplifiers,a5Vreferencevoltage,anoscillator,andaPWMcomparator.HowdoesPWMICwork?Asitsnamesuggests,pulsewidthmodulationspeedcontrolworksbydrivingthemotorwithaseriesofON-OFFpulsesandvaryingthedutycycle,thefractionoftimethattheoutputvoltageisONcomparedtowhenitisOFF,ofthepulseswhilekeepingthefrequencyconstant.WhichICisbetterforabuckconverter,TL494orUC3843?TheymainlydifferintypeofcontrolTL494=voltagemodecontrol(Oneloopcontrol).whileUC3843usescurrentmodecontrol(Nestedloopcontrol,withainner/fastcurrentloopandanotherouter/slowervoltageloop)Typicallyvoltagemodeareusedinmultipleoutputconverterswithgoodcross-regulation.CurrentmodewhenyouwanttoparallelmultipleconverterstomakeasingleconverterwithhighercurrentratingTL494isaverypopularIC.IfyouhavesimplerequirementsTL494isrecommendedHowdoIproperlysetthefeedbackpinonaTL494SMPSIC?Thefeedbackpinistheoutputofbotherroramplifiers,usedincomparingandadjustingtheoutputpulsewidthtotheDCcontrolvoltage.OnvariouscircuitsIhavelookedup,theop-ampconnectedtopins23areusedtosetthegainofthefeedbackloop,using2resistorswithoneresistorconnectingto2.5Vpotentialdivideron5Vreferencevoltage.Withtheotherconnectingtotheoutput(viasuitableisolation)Thegainappearstobesetat101,usinga51kfeedbackwith510ohmstothe2.5Vreference.Itisusedtocontrolthegainofthefeedbackvoltage.NoliteratureIhaveyetfound,givesanindicationonhowthisgainbeset,exceptagraphshowinganopenloopgainof1000,presumablythegainissetforthebeststability,althoughtherewillalsobeatimeconstant.WhyistherenofrequencycompensationrequiredinTIsTL494examplebuckregulatordesign(operationalamplifier,buckphase,shiftphase,margin,TL494,electronics)?ItsafixedfrequencyPWMcontrollerwithinternaldeadtimetimer.Frequencycompensationisnotrequired.Takealookatthedatasheet.HowtouseTL494?

AIRMAX0S

IDescriptionTL494,isaswitchingpowersupplypulse-widthmodulation(PWM)controlchip.DesignedandintroducedbyTexasInstrumentsintheearly1980s,theTL494gainedimmediateandwidespreadmarketacceptance,especiallyinATXhalf-bridgepowersuppliesforPCcomputers.TL494PWMControllerTL494hasbecomeanindustry-standardchip,producedbymanyintegratedcircuitmanufacturers.Widelyusedinsingle-endedforwarddual-tube,half-bridge,andfull-bridgeswitchingpowersupplies.TL494hastwopackagingforms,SO-16andPDIP-16,tomeettherequirementsofdifferentoccasions.CatalogIDescriptionIITL494FeaturesIIITL494InternalStructure3.15VReferenceSource3.2SawtoothOscillator3.3OperationalAmplifier3.4Comparator3.5PulseTrigger3.6QuietTimeComparatorIVTL494WorkingPrincipleVConclusionFAQOrdering&QuantityIITL494FeaturesCompletePWMPower-ControlCircuitryUncommittedOutputsfor200-mASinkorSourceCurrentOutputControlSelectsSingle-EndedorPush-PullOperationInternalCircuitryProhibitsDoublePulseatEitherOutputVariableDeadTimeProvidesControlOverTotalRangeInternalRegulatorProvidesaStable5-VReferenceSupplyWith5%ToleranceCircuitArchitectureAllowsEasySynchronizationIIITL494InternalStructureFigure1.TL494InternalStructure3.15VReferenceSourceTL494hasabuilt-inreferencesourcebasedonthebandgapprinciple.Thestableoutputvoltageofthereferencesourceis5V.TheconditionisthattheVCCvoltageisabove7V.Theerroriswithin100mV.Theoutputpinofthereferencesourceisthe14thpinREF.3.2SawtoothOscillatorTL494hasabuilt-inlinearsawtoothwaveoscillator,whichgeneratesa0.3~3Vsawtoothwave.TheoscillationfrequencycanbeadjustedbyanexternalresistorRtandacapacitorCt.Itsoscillationfrequencyis:f=1/Rt*CtAmongthem:TheunitofRtisohm;TheunitofCtisfarad.ThesawtoothwavecanbemeasuredattheCtpin.3.3OperationalAmplifierTL494integratestwooperationalamplifierspoweredbyasinglepowersupply.Thetransferfunctionoftheoperationalamplifierisft(ni,inv)=A(ni-inv),butitcannotexceedtheoutputswing.Ingeneralpowercircuits,theop-ampisconnectedtooperateinaclosed-loop.Open-loopisusedinafewspecialcases,andthesignalisinputfromtheoutside.Theoutputterminalsofthetwooperationalamplifiersarerespectivelyconnectedtoadiode,whichisconnectedtotheCOMPpinandthesubsequentcircuit(comparator).Thisensuresthatthehigheroutputofthetwoop-ampsentersthesubsequentcircuit.3.4ComparatorThesignal(COMPpin)outputbytheoperationalamplifierentersthepositiveinputterminalofthecomparatorinsidethechipandiscomparedwiththesawtoothwaveenteringthenegativeinputterminal.WhenthesawtoothwaveishigherthanthesignaloftheCOMPpin,thecomparatoroutputs0,otherwise,itoutputs1.3.5PulseTriggerThepulseflip-flopturnsonatthefallingedgeofthesawtoothwaveandthecomparatoroutputs1.Thismakesoneofthetwooutputs(inturn)on-chiptransistorsareturnedonandcutoffwhenthecomparatoroutputdropstozero.3.6QuietTimeComparatorThedeadzonetimeissetbyDeadTimeControlpin4.Itusesacomparatortointerferewiththepulsetriggerandlimitthemaximumdutycycle.Theupperlimitofthedutycycleofeachendcanbesetupto45%,andtheupperlimitofthedutycycleisabout42%whentheoperatingfrequencyishigherthan150KHz.(WhentheDTCpinlevelissetto0).IVTL494WorkingPrincipleTL494isafixedfrequencypulsewidthmodulationcircuitwithabuilt-inlinearsawtoothoscillator.Theoscillationfrequencycanbeadjustedbyanexternalresistorandacapacitor.Theoscillationfrequencyisasfollows:ThewidthoftheoutputpulseisachievedbycomparingthepositivesawtoothvoltageonthecapacitorCTwiththeothertwocontrolsignals.ThepoweroutputtubesQ1andQ2arecontrolledbyaNORgate.Itwillbestrobedwhentheclocksignaloftheflip-flopislow.Thatis,itwillbegatedonlywhenthesawtoothvoltageisgreaterthanthecontrolsignal.Whenthecontrolsignalincreases,theoutputpulsewidthwilldecrease.Wecantakealookatthepicturebelow.Figure2.TL494PulseControlWaveform​Thecontrolsignalisinputfromtheoutsideoftheintegratedcircuit.Oneissenttothedeadtimecomparator,andoneissenttotheinputoftheerroramplifier.Thedead-timecomparatorhasaninputcompensationvoltageof120mV,whichlimitstheminimumoutputdead-timetoapproximately4%ofthesawtoothperiod.Whentheoutputterminalisgrounded,themaximumoutputdutycycleis96%.Whentheoutputterminalisconnectedtothereferencelevel,thedutycycleis48%.Whenthedeadtimecontrolinputisconnectedtoafixedvoltage(rangebetween0-3.3V),additionaldeadtimecanbegeneratedontheoutputpulse.Thepulsewidthmodulationcomparatorprovidesameansfortheerroramplifiertoadjusttheoutputpulsewidth.Whenthefeedbackvoltagechangesfrom0.5Vto3.5,theoutputpulsewidthdropstozerofromthemaximumon-percentagetimedeterminedbythedeadzone.Thetwoerroramplifiershaveacommonmodeinputrangefrom-0.3Vto(Vcc-2.0),whichmaybedetectedfromtheoutputvoltageandcurrentofthepowersupply.Theoutputoftheerroramplifierisalwaysatahighlevel.ItperformsORoperationwiththeinvertinginputterminalofthepulsewidthmodulator.Itisthiscircuitstructurethattheamplifiercandominatethecontrolloopwithminimaloutput.WhenthecomparatorCTdischarges,apositivepulseappearsattheoutputofthedeadzonecomparator,andtheflip-flopconstrainedbythepulseistimed.AtthesametimestoptheworkoftheoutputtubesQ1andQ2.Iftheoutputcontrolterminalisconnectedtothereferencevoltagesource,themodulatedpulseisalternatelyoutputtothetwooutputtransistors,andtheoutputfrequencyisequaltohalfofthepulseoscillator.Ifitworksinasingle-endedstateandthemaximumdutycycleislessthan50%,theoutputdrivesignalisobtainedfromthetransistorQ1orQ2respectively.Afeedbackwindinganddiodeoftheoutputtransformerprovidefeedbackvoltage.Insingle-endedoperatingmode,whenahigherdrivecurrentoutputisrequired,Q1andQ2canalsobeusedinparallel.Atthistime,theoutputmodecontrolpinneedstobegroundedtoturnofftheflip-flop.Inthisstate,theoutputpulsefrequencywillbeequaltotheoscillatorfrequency.VConclusionThisblogsummarizesthecharacteristics,internalstructureandworkingprincipleofTL494.AlthoughthearchitectureofTL494hasbeenproventobeextremelyexcellentinhistory,itisfacingeliminationinthehigh-endmarketduetoitsoldtechnology,lowfrequency,andlackofnewenergy-savingfeatures.However,itisworthmentioningthatTL494isstillwidelyadoptedinthelow-endandmid-endmarkets.FAQWhatisTL494?TL494isaPWMcontrollerICusedforpowerelectronicscircuits.Itcomprisesofon-chiptwoerroramplifiersanoscillatorwithadjustablefrequencyfeature,anoutputflip-flophavingpulsesteeringcontrol,andanoutputcontrolcircuitwithfeedback.WhatisthedetaileddescriptionofTL494?TheTL494deviceincorporatesallthefunctionsrequiredintheconstructionofapulse-width-modulation(PWM)controlcircuitonasinglechip.Designedprimarilyforpower-supplycontrol,thisdeviceofferstheflexibilitytotailorthepower-supplycontrolcircuitrytoaspecificapplication.TheTL494devicecontainstwoerroramplifiers,anon-chipadjustableoscillator,adead-timecontrol(DTC)comparator,apulse-steeringcontrolflip-flop,a5-V,5%-precisionregulator,andoutput-controlcircuits.Theerroramplifiersexhibitacommon-modevoltagerangefrom0.3VtoVCC2V.Thedead-timecontrolcomparatorhasafixedoffsetthatprovidesapproximately5%deadtime.Theon-chiposcillatorcanbebypassedbyterminatingRTtothereferenceoutputandprovidingasawtoothinputtoCT,oritcandrivethecommoncircuitsinsynchronousmultiple-railpowersupplies.Theuncommittedoutputtransistorsprovideeithercommon-emitteroremitter-followeroutputcapability.TheTL494deviceprovidesforpush-pullorsingle-endedoutputoperation,whichcanbeselectedthroughtheoutput-controlfunction.Thearchitectureofthisdeviceprohibitsthepossibilityofeitheroutputbeingpulsedtwiceduringpush-pulloperation.WhatareTL494productfeatures?CompletePWMPower-ControlCircuitryUncommittedOutputsfor200-mASinkorSourceCurrentOutputControlSelectsSingle-EndedorPush-PullOperationInternalCircuitryProhibitsDoublePulseatEitherOutputVariableDeadTimeProvidesControlOverTotalRangeWhatisPWMIC?TheTL494fixedfrequencyPWMControllercanbeusedforDCtoDCconversionregardlessofbuckorboosttopology....ThisICfeatureanoutputcontrolcircuit,aflipflop,adeadtimecomparator,twodifferenterroramplifiers,a5Vreferencevoltage,anoscillator,andaPWMcomparator.HowdoesPWMICwork?Asitsnamesuggests,pulsewidthmodulationspeedcontrolworksbydrivingthemotorwithaseriesofON-OFFpulsesandvaryingthedutycycle,thefractionoftimethattheoutputvoltageisONcomparedtowhenitisOFF,ofthepulseswhilekeepingthefrequencyconstant.WhichICisbetterforabuckconverter,TL494orUC3843?TheymainlydifferintypeofcontrolTL494=voltagemodecontrol(Oneloopcontrol).whileUC3843usescurrentmodecontrol(Nestedloopcontrol,withainner/fastcurrentloopandanotherouter/slowervoltageloop)Typicallyvoltagemodeareusedinmultipleoutputconverterswithgoodcross-regulation.CurrentmodewhenyouwanttoparallelmultipleconverterstomakeasingleconverterwithhighercurrentratingTL494isaverypopularIC.IfyouhavesimplerequirementsTL494isrecommendedHowdoIproperlysetthefeedbackpinonaTL494SMPSIC?Thefeedbackpinistheoutputofbotherroramplifiers,usedincomparingandadjustingtheoutputpulsewidthtotheDCcontrolvoltage.OnvariouscircuitsIhavelookedup,theop-ampconnectedtopins23areusedtosetthegainofthefeedbackloop,using2resistorswithoneresistorconnectingto2.5Vpotentialdivideron5Vreferencevoltage.Withtheotherconnectingtotheoutput(viasuitableisolation)Thegainappearstobesetat101,usinga51kfeedbackwith510ohmstothe2.5Vreference.Itisusedtocontrolthegainofthefeedbackvoltage.NoliteratureIhaveyetfound,givesanindicationonhowthisgainbeset,exceptagraphshowinganopenloopgainof1000,presumablythegainissetforthebeststability,althoughtherewillalsobeatimeconstant.WhyistherenofrequencycompensationrequiredinTIsTL494examplebuckregulatordesign(operationalamplifier,buckphase,shiftphase,margin,TL494,electronics)?ItsafixedfrequencyPWMcontrollerwithinternaldeadtimetimer.Frequencycompensationisnotrequired.Takealookatthedatasheet.HowtouseTL494?

IDescriptionThisblogintroducesapulsewidthmodulationtechnologywithTL494asthecontrolcore.AnditisappliedtoDCmotorcontrolsystem.Theworkingprincipleofthesystem,therealizationcircuitandthestructureandspecificapplicationofthePWMcontrolchipareanalyzedindetail.CatalogIDescriptionIIWorkingPrincipleandRealizationofControlSystem2.1HowSystemWorks2.2SelectionofPWMControlChip2.3RealizationCircuitofSystemIIISimulationResultsIVConclusionFAQOrdering&QuantityIIWorkingPrincipleandRealizationofControlSystem2.1HowSystemWorksThebasicdesignideaofthiscontrolsystemistouseastep-downchoppercircuitasshowninFigure1.Figure1.Step-downChopperCircuitanditsWaveformInthefigure,theDCpowersupplyisUd,andtheloadisamotor(M).Whentheswitchingdevice(VT)istriggeredandturnedon,theDCvoltageisappliedtothemotorforadurationoft1.Whenthefieldswitchingdeviceisturnedoff,thevoltageontheloadiszeroandlastsfort2time.IfwedefinethedutycycleT=t1+t2,andthedutycyclek=t/T,thewaveformdiagramandtheprincipleoftheDCchoppercircuitareasfollows:Theaveragevalue(Uo)ofthesystemoutputvoltageis:Theeffectivevalue(U)ofitsoutputvoltageis:Thepulsewidthmodulation(PWM)workingmodeadoptedbythissystemkeepsTunchangedandt1changes.TheprincipleblockdiagramofthecontrolsystemisshowninFigure2.Figure2.ControlSystemBlockDiagramThepowersupplyinthissystemmakesthemotorworkthroughthepowerdrivecircuit.Theon-offofthepowerdrivecircuitiscontrolledbythePWMcontrolchip.ThesystemsamplesthemotorcurrentfeedsitbacktothePWMcontrolchipandcomparesitwiththecurrentvalueofthecurrentcomparisoncircuit.TocontrolthePWMsignaloutputtoachievethepurposeofspeedregulation.ThesystemalsosamplesthepowersupplyvoltageandfeedsitbacktothePWMcontrolchip.Inthisway,itcanbecomparedwiththevoltagevalueofthevoltagecomparisoncircuittocontrolthePWMsignaloutputandachievetheeffectofUndervoltageprotection.WeusethecommonBUCKcircuitforthepowerdrivecircuitandPowerMOSFETfortheswitchtube.Theregulationofitsoutputvoltageisrealizedbycontrollingtheturn-ontimeofthedevice.Consideringtheinfluenceoftheinductanceofthemotor,theoutputcurrentisrelativelystableandtheenergyconsumptionislow.2.2SelectionofPWMControlChipInthecontrolcircuitofthemotorPWMcontrolsystem,theTL494chipisselected.TL494chiphasthefeaturesofstronganti-interferenceability,simplestructure,highreliabilityandlowprice.TheinternalcircuitofTL494(Figure3)consistsofthefollowingparts:Thereferencevoltagegeneratingcircuit;Oscillationcircuit;Intermittentadjustmentcircuit;Twoerroramplifiers;Pulsewidthmodulationcomparator;Outputcircuit;...Figure3.TL494InternalStructureAmongthem:Forpins1and2,theyarethenon-invertingandinvertinginputterminalsoferroramplifier1.Forpin3,itisphasecorrectionandgainscontrol.Forpin4,itisanintermittentperiodofconditioning,andthecut-offtimecanbechangedfrom2%to100%whenavoltageof0~3.3Visappliedtoit.Forpins5and6,theyareusedtoconnectexternaloscillationresistorRTandoscillationcapacitorCTtodeterminethefrequencyfoscofthesawtoothwavegeneratedbytheoscillator.Where:ThevaluerangeofRTandCT:RT=5~100kQ,CT=0.001~0.1F.Pin7isthegroundterminal;Forpins8,9and11,10,theyarethecollectorandemitterofthetwofinaloutputtransistorsinsideTL494;For12feet,itisthepowersupplyterminal;Forpin13,itistheoutputcontrolterminal.Whenthispinisgrounded,itisaparallelsingle-endedoutputmode.Whenpin14isconnected,itisapush-pulloutputmode;For14feet,itisthe5Vreferencevoltageoutputterminal,themaximumoutputcurrentis10mA;For15and16pins,theyaretheinvertingandnon-invertinginputterminalsoftheerroramplifier2.2.3RealizationCircuitofSystemTheconcreterealizationcircuitofthiscontrolsystemisshowninFig.4.Thesystemusescurrentnegativefeedbacktotrackthespeedofthemotor.Atthesametime,throughthenegativefeedbackofthevoltageofthepowersupply,thesystemhasthefunctionofundervoltageprotection.Figure4.SystemImplementationCircuitThemotorcurrentisdetectedandfedbacktopin1oftheerroramplifier1oftheTL494,comparedwiththecurrentreferencesignalofpin2tocontrolthePWMoutputofTL494.Soastorealizethefunctionofregulatingthespeedofthemotor.Byadjustingtheresistancevalueoftheadjustableresistor(RES1).Thatis,changethesizeofthesetcurrentreferencesignaltoadjustthedutycycleofthePWMoutputsignal.Soastoachievethepurposeofadjustingthemotorspeed.Bysamplingthevoltageofthepowersupply,itisfedbacktopin15oftheinternalerroramplifier2ofTI494.Thencomparewiththevoltagereferencesignalofpin16tocontrolthePWMoutputofTL494.Soastorealizetheundervoltageprotectionfunctionofthesystem.ThesystempowerisdrivenbyPowerMOSFET,whichhasahighinputimpedanceandcanbedirectlydrivenbyatransistor.Pin13ofTI494isusedtocontroltheoutputmode.Inthissystem,choosetoinputthisendaslowlevel.Atthistime,theflip-flopsQ1andQ2intheTL494donotwork,thetwooutputsarethesame,thefrequencyisthesameastheoscillatorfrequency,andthemaximumdutycycleis98%.IIISimulationResultsInordertoverifytheeffectivenessofthesystem,wecansimulatethecircuitoftheabove-mentionedDCmotorcontrolsystembasedonPWMtechnologybycomputer.WesetthesystemspowersupplyvoltageUcc=12V,DCmotorratedparameters:Un=12V,In=15A,4poles,armatureresistanceRa=0.21Q,momentofinertiaJ=0.57kg㎡.ThroughchangingtheadjustableresistanceRES1ofthecontrolcircuittorealizethedifferentdutyratioofthesystemoutput.Whentheoutputdutyratiois0.2,0.65/0.8,thevoltageandcurrentwaveformsofthemotorareshowninFigure5.Figure5.MotorVoltageandCurrentWaveformItcanbeseenfromFigure5thatwhenoutputtingdifferentdutyratios,thevoltageandcurrentwaveformsofthemotorarestable,whichisconducivetothelong-termstableoperationofthemotor.ThisshowsthattheTL494-basedPWMcontroltechnologyintroducedinthisarticleisfeasibleinpracticalapplicationsandrunsstably.IVConclusionThisblogsummarizesaPWMcontroltechnologybasedontheTL494chip.Thesimulationresultsshowthatthesystemhasasimplestructure,lowenergyconsumption,andstableoperation.AndthecharacteristicsoftheTL494chiphavebeenfullyutilizedsothatthesystemhastheadvantagesofundervoltageprotection.FAQWhatisTL494?TL494isaPWMcontrollerICusedforpowerelectronicscircuits.Itcomprisesofon-chiptwoerroramplifiersanoscillatorwithadjustablefrequencyfeature,anoutputflip-flophavingpulsesteeringcontrol,andanoutputcontrolcircuitwithfeedback.WhatisthedetaileddescriptionofTL494?TheTL494deviceincorporatesallthefunctionsrequiredintheconstructionofapulse-width-modulation(PWM)controlcircuitonasinglechip.Designedprimarilyforpower-supplycontrol,thisdeviceofferstheflexibilitytotailorthepower-supplycontrolcircuitrytoaspecificapplication.TheTL494devicecontainstwoerroramplifiers,anon-chipadjustableoscillator,adead-timecontrol(DTC)comparator,apulse-steeringcontrolflip-flop,a5-V,5%-precisionregulator,andoutput-controlcircuits.Theerroramplifiersexhibitacommon-modevoltagerangefrom0.3VtoVCC2V.Thedead-timecontrolcomparatorhasafixedoffsetthatprovidesapproximately5%deadtime.Theon-chiposcillatorcanbebypassedbyterminatingRTtothereferenceoutputandprovidingasawtoothinputtoCT,oritcandrivethecommoncircuitsinsynchronousmultiple-railpowersupplies.Theuncommittedoutputtransistorsprovideeithercommon-emitteroremitter-followeroutputcapability.TheTL494deviceprovidesforpush-pullorsingle-endedoutputoperation,whichcanbeselectedthroughtheoutput-controlfunction.Thearchitectureofthisdeviceprohibitsthepossibilityofeitheroutputbeingpulsedtwiceduringpush-pulloperation.WhatareTL494productfeatures?CompletePWMPower-ControlCircuitryUncommittedOutputsfor200-mASinkorSourceCurrentOutputControlSelectsSingle-EndedorPush-PullOperationInternalCircuitryProhibitsDoublePulseatEitherOutputVariableDeadTimeProvidesControlOverTotalRangeWhatisPWMIC?TheTL494fixedfrequencyPWMControllercanbeusedforDCtoDCconversionregardlessofbuckorboosttopology....ThisICfeatureanoutputcontrolcircuit,aflipflop,adeadtimecomparator,twodifferenterroramplifiers,a5Vreferencevoltage,anoscillator,andaPWMcomparator.HowdoesPWMICwork?Asitsnamesuggests,pulsewidthmodulationspeedcontrolworksbydrivingthemotorwithaseriesofON-OFFpulsesandvaryingthedutycycle,thefractionoftimethattheoutputvoltageisONcomparedtowhenitisOFF,ofthepulseswhilekeepingthefrequencyconstant.WhichICisbetterforabuckconverter,TL494orUC3843?TheymainlydifferintypeofcontrolTL494=voltagemodecontrol(Oneloopcontrol).whileUC3843usescurrentmodecontrol(Nestedloopcontrol,withainner/fastcurrentloopandanotherouter/slowervoltageloop)Typicallyvoltagemodeareusedinmultipleoutputconverterswithgoodcross-regulation.CurrentmodewhenyouwanttoparallelmultipleconverterstomakeasingleconverterwithhighercurrentratingTL494isaverypopularIC.IfyouhavesimplerequirementsTL494isrecommendedHowdoIproperlysetthefeedbackpinonaTL494SMPSIC?Thefeedbackpinistheoutputofbotherroramplifiers,usedincomparingandadjustingtheoutputpulsewidthtotheDCcontrolvoltage.OnvariouscircuitsIhavelookedup,theop-ampconnectedtopins23areusedtosetthegainofthefeedbackloop,using2resistorswithoneresistorconnectingto2.5Vpotentialdivideron5Vreferencevoltage.Withtheotherconnectingtotheoutput(viasuitableisolation)Thegainappearstobesetat101,usinga51kfeedbackwith510ohmstothe2.5Vreference.Itisusedtocontrolthegainofthefeedbackvoltage.NoliteratureIhaveyetfound,givesanindicationonhowthisgainbeset,exceptagraphshowinganopenloopgainof1000,presumablythegainissetforthebeststability,althoughtherewillalsobeatimeconstant.WhyistherenofrequencycompensationrequiredinTIsTL494examplebuckregulatordesign(operationalamplifier,buckphase,shiftphase,margin,TL494,electronics)?ItsafixedfrequencyPWMcontrollerwithinternaldeadtimetimer.Frequencycompensationisnotrequired.Takealookatthedatasheet.HowtouseTL494?IntroductionTheCD4066isaquadbilateralswitchwhichcanbeappliedforswitchingofanalogsignalsanddigitalsignals.Itconsistsoffourindependentanalogswitches,eachwiththreeterminals:input,outputandcontrol.Whenthecontrolterminalisappliedwithhighpowerlevel,theswitchison.Whenthecontrolterminalisaddedwithlowpowerlevel,theswitchisclosed.Theinputterminalandoutputterminalcanbeusedinterchangeably.Thisconfigurationeliminatesthevariationoftheswitch-transistorthresholdvoltagewithinputsignaland,thus,keepstheon-stateresistancelowoverthefulloperating-signalrange.Theadvantagesoversingle-channelswitchesincludepeakinput-signalvoltageswingsequaltothefullsupplyvoltageandmoreconstanton-stateimpedanceovertheinput-signalrange.ThisarticleintroducestwoapplicationexamplesofCD4066analogswitch.CatalogIntroductionCatalogITrack-and-HoldCircuitofSignalIIInterchangingDisplayCircuitofFourWaysofElectronicSignalFAQOrdering&QuantityITrack-and-HoldCircuitofSignalFigure1.Track-and-HoldCircuitofSignalTheanalogsignalUiisfromthein-phaseinputoftheoperationalamplifier.Whenthecontrolterminaloftheanalogswitchisathighlevel,theanalogswitchison,andthecapacitorCischargedtoUi.Thisprocessiscalledthesamplingoftheinputsignal.Whenthesamplingisover,thecontrolterminaloftheanalogswitchislowlevelandtheanalogswitchisoff.Becausetheresistanceisashighas100Mwhentheanalogswitchisoff,andtheinputimpedanceofoperationalamplifierA2isalsoveryhigh,thesamplingsignalcanbemaintainedonthecapacitorC.IIInterchangingDisplayCircuitofFourWaysofElectronicSignalAgeneralsinglelineoscilloscopecanonlydisplayonecontinuoussignal.Butthisdevicecandisplayfourcontinuoussignalssimultaneouslyinasinglelineoscilloscope.Itisveryconvenienttocomparethetimerelationofdifferentsignals.Figure2.InterchangingDisplayCircuitofFourWaysofElectronicSignalFigure2isthecircuitdiagramofthedevice.ItusesaCD4017counterandoscillatortoformafour-beatcircuittocontrolthefouranalogswitchesintwoCD4066.AdjustableDClevelandoneinputsignalareaddedrespectivelyoneachpairofanalogswitches.Whenthecontrolendoftheanalogswitchishighlevel1,theanalogswitchison.TheDClevelandinputsignalaresenttothey-axisinputendoftheoscilloscope.BecausethefoursignalscorrespondtodifferentDClevels,thefoursignalsdisplayseparatelyontheoscilloscope.AlthoughthefourpairsofanalogswitchesarecontrolledbythecountersQ0,Q1,Q2,Q3outputterminal,theflickerofthewaveformissmallduetothehighoscillationfrequencyoftheoscillator.FAQWhatisCD4066?TheCD4066isaQuadBilateralSwitchIC,thatis,ithasfourswitcheswhichcanbecontrolledindividualusingacontrolpin.Theseswitchescanconductinboththedirectionsmakingitbilateral,itiscommonlyusedformultiplexinganalogordigitalsignals.HowtouseCD4066?TheCD4066ICconsistsoffourswitches.Itcanswitchanalogsignalsthroughdigitalcontrol.Ananalogsignalisappliedattheinputoftheswitch.IfaHIGHor1valueisfedintothecontrolinput,theanalogsignalwillbepassedfrominputtotheoutputofaswitch.HowCD4066work?The4066reallyfunctionsasananalogswitch.The4066isanICcomposedofswitcheswhicharedesignedtoswitchanalogsignalsviadigitalcontrol....The4066isaquadbilateralswitchcircuit,meaningthatiscomposedof4switches.Eachswitchhasasingleinputandasingleoutputterminal.WhataretheapplicationsofCD4066?TheCD4066isabi-directionalanalogswitchingICsimilartoCD4016,itiscommonlyusedinmultiplexingapplications;itcanalsobeusedtoisolatesignals.Theswitchisbilateralandhencecanbeusedforbothdigitalandanalogsignals.WhatsthedifferencebetweenCD4016andCD4066?ThemajordifferencebetweenbothisthatCD4066hasverylowinternalresistance,accordingtothedatasheetitcanonly5ofon-stateresistanceascomparedwith200ofCD4016IC.

IDescriptionIndailylife,calendarclocksareusedinvariousplaces.Suchasshoppingmalls,supermarkets,offices,homes,schools,etc.Comparedwiththetraditionalmechanicalclock,thedigitalcalendarclockhasaseriesofadvantages.Suchashighprecision,intuitivedisplay,andlonglife.ThisblogintroducesacalendarclockdesignedwithaDS1302rtcchip.DS1302RTCwithArduinoTutorialCatalogIDescriptionIISystemHardwareDesign2.1OverallStructure2.2DS1302ClockModule2.3LCD1602LCDModuleIIISystemSoftwareDesign3.1DesignofDS1302ClockSubprogram3.2LCD1602LiquidCrystalDisplaySubprogramDesignIVConclusionFAQOrdering&QuantityIISystemHardwareDesign2.1OverallStructureTakeAT89C51single-chipmicrocomputerasthemaincontroller,anduseDS1302clockchiptodesigncalendarclock.ItsoverallstructureisshowninFigure1.Figure1.OverallStructureofSystemThedesignedcalendarclockmustnotonlydisplayhours,minutesandseconds,butalsodisplayyears,months,daysandweeks.ThecoreofthesystemistheAT89C51microcontroller.Throughthesingle-chipcomputercontrolDS1302displaycalendarandtime.AndtheoutputresultisdisplayedonLCD1602liquidcrystalscreen.2.2DS1302ClockModuleTheDS1302clockchiphasthecharacteristicsoflowpowerconsumptionandhighperformance.Itcancommunicatewiththemicrocontrollerthroughasimplesynchronousserialmode,andonlyrequiresthreeI/Olines.Namelyreset(RST),I/Odatalineandserialclock(SCLK)2.2.1DS1302PinsandStructureFigure2showstheexternalpinsandfunctionsofDS1302.Figure2.DS1302PinoutVCC2-mainpowersupplypin;X1,X2-32.768kHzcrystaloscillatorpin;GND-ground;VCC1-batterypin;SCLK-serialclock;I/O-datainput/output;RST-reset.TheinternalstructureofDS1302isshowninFigure3,whichismainlycomposedofthefollowingparts:real-timeclock,datamemoryRAM,oscillatorcircuitandfrequencydivider,inputshiftregister,commandandcontrollogicandsoon.2.2.2DS1302RegistersandcontrolcommandsTheDS1302clockchiphas7registersrelatedtothecalendarclock,asshowninTable1.ThecommunicationsignalbetweenDS1302andsingle-chipmicrocomputerisrealizedthroughsimplesynchronousserialcommunication.AccordingtotheworkingtimingrequirementsofDS1302,whetherthesingle-chipmicrocomputerperformsreadoperationcommunicationfromDS1302orthesingle-chipcomputerperformswriteoperationcommunicationtoDS1302,eachcommunicationisinitiatedbythesingle-chipcomputerfirst.Inotherwords,beforeexecutingthecorrespondingreadorwriteoperation,themicrocontrollermustwriteabyteofcommandwordtoDS1302.Theeight-bitdataofthebytecommandwordisshowninFigure4.Figure4.CommandwordstructureofDS13022.3LCD1602LCDModuleTheLCD1602screencandisplaytwolinesofcharacters,16charactersperline,foratotalof32characters.Thereisan80*8-bitdisplaydatamemoryDDRAMbufferinLCD1602.SeeTable2forthecorrespondencebetweencharacterdisplaybitsandDDRAMaddress.TheaddressonthefirstlineofDDRAMstartsat00Handendsat27H.Theaddressesonthesecondlinestartat40Handendat67H,with40addressesperline.AndLCD1602displays16charactersperline.Therefore,whenwritingaprogram,selectthefirst16addressesofDDRAM.Itisimportanttonotethatthesecondlineaddressstartsfrom40H.IfyouwanttodisplayacharacterinacertainrowandcertaincolumnoftheLCD1602screen,writetheASCIIcodecorrespondingtothischaracterintothecorrespondingDDRAMaddressofacertainrowandcertaincolumn.Atthistime,youwillfindthatthecharactercannotbedisplayednormallyontheLCDscreen.Thereasonisthat80Hmustbeaddedtotheaddress.Forexample,todisplaythesymbolVinthesecondrowandsecondcolumnofthevoltageunitvolts,firstadd80HtothecorrespondingDDRAMaddress41Hinthesecondrowandsecondcolumn,thatis,C1H.ThenwritetheASCIIcode0x56correspondingtotheVcharacterintheC1Haddress.Onlythencanitbedisplayednormally.Thedisplayofothercharacterscanbededucedbyanalogyandwillnotberepeatedhere.IIISystemSoftwareDesignThesoftwareprogrammainlycompletesthefunctionsofdatareading,conversionandliquidcrystaldisplayofthecalendarclock.3.1DesignofDS1302ClockSubprogramsbitRST=P1^0;//DS1302resetportisdefinedinP1.0pinsbitSCLK=P1^1;//TheDS1302clockoutputportisdefinedontheP1.1pinsbitDATA=P1^2;//TheDS1302dataoutputportisdefinedontheP1.2pin(1)Theprogramthatthesingle-chipmicrocomputerwritesabyteofdatatoDS1302voidwright1302(unsignedchardate){Unsigneedchari;SCLK=0;//BepreparedfortherisingedgetowritedataDelaynus(2);for(i=0;i8;i++)//Writeeight-bitdatacontinuously{DATA=date0x01;//Writethebit0dataofdateintoDS1302Delaynus(2);SCLK=1;//WritedataonrisingedgeDelaynus(2);SCLK=0;//date=1;//moveoneplacetotheright}}(2)Theprogramforthesingle-chipmicrocomputertoreadabyteofdatafromDS1302unsignedcharreadd1302(void){Unsignedchari,date;Delaynus(2);for(i=0;i8;i++)//Continuouslyreadeight-bitdata{Date=1;//shiftonebittotherightif(DATA==1)//Ifthedatareadoutis1date|=0x80;//Takeout1andwriteitinthehighestbitofdateSCLK=1;//SetSCLKtoahighlevel,readoutforthefallingedgeDelaynus(2);SCLK=0;//PulldownSCLKtoformthefallingedgeofthepulseDelaynus(2);}returndate;//Returnthereaddata}3.2LCD1602LiquidCrystalDisplaySubprogramDesignThedriverprogramofLCD1602LCDscreenisrelativelycomplicatedtocompile,sowemustfigureouttheusageandmeaningofeachoperationinstructionof1602.Mainlyincludethefollowing:DisplaymodesettingDisplayswitchcontrolInputmodecontrolReaddatafromDDRAMWritedatatoDDRAMClearscreen,cursorhomesettingDataaddresspointersettingLCDscurrentbusyworksign...Partofthecodedesignisasfollows:voidLcd_initial()//InitializeLCD{E=0;Lcd_writecmd(0x38);//16*2display,5*7dotmatrixMsdelay(1);Lcd_writecmd(0x08);//displayoffMsdelay(2);Lcd_writecmd(0x01);//displayclearscreenMsdelay(2);Lcd_writecmd(0x06);//Setthecursor,afterreadingandwritingacharacter,thecursorincreasesby1Msdelay(1);Lcd_writecmd(0x0c);//displayison,nocursorisdisplayedMsdelay(1);}Figure5.HardwarepowersupplydiagramofDS1302calendarclockIntheMedwinV3.0developmentenvironment,useC51languagetocompilethesystemprogram,compileanddebug.AndloadtheHEXhexadecimalfilegeneratedbycompilingintotheMCUchip.StartthesimulationandyoucanseethesimulationrunningeffectoftheDS1302calendarclockdesignsystembasedon1602LCDdisplay.Forexample,thecurrenttimeis11:42:25onMay28,2019,andthesimulationresultisshowninFigure6.Figure6.SimulationresultsofcalendarclockItcanbeseenfromFigure6thatthecurrentdateandtimecanbedisplayedontheLCDscreeninrealtimeandaccurately.IVConclusionCalendarclocksareeverywhereinourlives.ThistexttakesAT89C51single-chipmicrocomputerasthemaincontroller,andusesDS1302real-timeclockchiptodesignthecalendarclocksystem.Inaddition,thehardwarecircuitwasdesignedintheProteussimulationsoftware,andthecorrespondingC51programwaswrittenintheMedwinV3.0developmentenvironment.Thejointuseofthesetwosoftwares,ProteusandMedWinV3.0,greatlyimprovestheefficiencyofsingle-chipsystemdesign,reducescosts,andshortensthedevelopmentcycle.FAQWhatisDS1302?DS1302isatickle-chargetimekeepingchipwhichcontainsareal-timeclock/calendarand31bytesofstaticRAM.DS1302usesserialcommunicationtointeractwithmicrocontrollers.Also,itautomaticallyadjustthedateforthemonthwithfewerdays.WhatdoesanRTCdo?Areal-timeclock(RTC)isacomputerclock(mostoftenintheformofanintegratedcircuit)thatkeepstrackofthecurrenttime.Althoughthetermoftenreferstothedevicesinpersonalcomputers,serversandembeddedsystems,RTCsarepresentinalmostanyelectronicdevicewhichneedstokeepaccuratetime.HowdoyouuseRTC?WiringItUp.5VisusedtopowertotheRTCchipwhenyouwanttoqueryitforthetime.Ifthereisno5Vsignal,thechipgoestosleepusingthecoincellforbackup.ConnectGNDtocommonpower/dataground.ConnecttheSCLpintotheI2CclockSCLpinonyourArduino....ConnecttheSDApintotheI2CdataSDApinonyourArduino.DescriptionDS1302isalow-powerreal-timeclockchipwithtricklecurrentchargingcapability.Itcantimetheyear,month,day,week,hour,minute,andsecond.ThisVideoIntroducesDS1302ArduinoRealtimeClockCatalogDescriptionDS1302PinoutDS1302DocumentsandMediaDS1302CADModelsDS1302ParametersDS1302FeaturesDS1302AdvantageDS1302ApplicationsDS1302TypicalOperatingCircuitDS1302EnvironmentalandExportClassificationsDS1302BlockDiagramHowtoUseDS1302DS1302RTCModuleDS1302CommandByteFAQOrdering&QuantityDS1302PinoutThefigurebelowshowsthepinarrangementofDS1302.Amongthem,Vcc2isthemainpowersupply,andVCC1isthebackuppowersupply.Thecontinuousoperationoftheclockcanbemaintainedevenwhenthemainpowerisoff.DS1302ispoweredbythelargerofVcc1orVcc2.WhenVcc2isgreaterthanVcc1+0.2V,Vcc2suppliespowertoDS1302.WhenVcc2islessthanVcc1,DS1302ispoweredbyVcc1.X1andX2aretheoscillationsourcesandanexternal32.768kHzcrystaloscillator.RSTisthereset/chipselectline.AlldatatransfersarestartedbydrivingtheRSTinputtohigh.RSTinputhastwofunctions:First,RSTturnsonthecontrollogic,allowingtheaddress/commandsequencetobesenttotheshiftregister;second,RSTprovidesamethodtoterminatesingle-byteormulti-bytedatatransmission.WhenRSTishigh,alldatatransfersareinitialized,allowingoperationsonDS1302.IfRSTissettoalowlevelduringthetransfer,thedatatransferwillbeterminatedandtheI/Opinwillbecomehighimpedance.Duringpower-onoperation,RSTmustremainlowbeforeVcc2.0V.OnlywhenSCLKislow,canRSTbesethigh.I/Oisaserialdatainputandoutputterminal(two-way),whichwillbedescribedindetaillater.SCLKistheclockinputterminal.PinNumberPinNameDescription1VCC2PrimaryPower-SupplyPininDualSupplyConfiguration.VCC1isconnectedtoabackupsourcetomaintainthetimeanddateintheabsenceofprimarypower.TheDS1302operatesfromthelargerofVCC1orVCC2.WhenVCC2isgreaterthanVCC1+0.2V,VCC2powerstheDS1302.WhenVCC2islessthanVCC1,VCC1powerstheDS1302.2X1ConnectionsforStandard32.768kHzQuartzCrystal.Theinternaloscillatorisdesignedforoperationwithacrystalhavingaspecifiedloadcapacitanceof6pF.Formoreinformationoncrystalselectionandcrystallayoutconsiderations,refertoApplicationNote58:CrystalConsiderationsforDallasReal-TimeClocks.TheDS1302canalsobedrivenbyanexternal32.768kHzoscillator.Inthisconfiguration,theX1pinisconnectedtotheexternaloscillatorsignalandtheX2pinisfloated.3X24GNDGround5CEInput.CEsignalmustbeassertedhighduringareadorawrite.Thispinhasaninternal40kΩ(typ)pulldownresistortoground.Note:PreviousdatasheetrevisionsreferredtoCEasRST.Thefunctionalityofthepinhasnotchanged.6I/OInput/Push-PullOutput.TheI/Opinisthebidirectionaldatapinforthe3-wireinterface.Thispinhasaninternal40kΩ(typ)pulldownresistortoground.7SCLKInput.SCLKisusedtosynchronizedatamovementontheserialinterface.Thispinhasaninternal40kΩ(typ)pulldownresistortoground.8VCC1Low-PowerOperationinSingleSupplyandBattery-OperatedSystemsandLowPowerBatteryBackup.Insystemsusingthetricklecharger,therechargeableenergysourceisconnectedtothispin.ULrecognizedtoensureagainstreversechargingcurrentwhenusedwithalithiumbattery.DS1302DocumentsandMediaDatasheetsDS1302OtherRelatedDocumentsTipsforWritingBulletproofReal-TimeClockControlCodeMfgApplicationNotesEstimatingSuperCapacitorBackupTimeonTrickle-ChargerReal-TimeClocksSelectingaBackupSourceforReal-TimeClocksOscillatorDesignConsiderationsforLow-CurrentApplicationsStateMachineLogicinBinary-CodedDecimal(BCD)-FormattedReal-TimeClocksEnvironmentalInformationHalogenCertificateRedPhosphorousCertificateMaterialDeclarationDS1302PCNObsolescence/EOLMultDevOBS15/Jul/2015HTMLDatasheetDS1302EDA/CADModelsDS1302bySnapEDADS1302byUltraLibrarianDS1302CADModelsDS1302SymbolDS1302FootprintDS1302ParametersBaseProductNumberDS1302BatteryBackupSwitchingBackupSwitchingCategoryIntegratedCircuits(ICs)Clock/Timing-RealTimeClocksCurrent-Timekeeping(Max)0.3A~1A@2V~5VDateFormatYY-MM-DD-ddFeaturesLeapYear,NVSRAM,Trickle-ChargerFunctionCalendar,Clock,NVTimekeepingRAM,TrickleChargerInterface3-WireSerialManufacturerMaximIntegratedMaximumOperatingTemperature+70CMinimumOperatingTemperature0CMountingStyleThroughHoleOperatingTemperature0C~70CPackageTubePackage/Case8-DIP(0.300,7.62mm)PackagingTubePartStatusObsoleteProductCategoryRealTimeClockRoHSNRTCBusInterfaceSerialRTCMemorySize31BSubcategoryClockTimerICsSupplierDevicePackage8-PDIPSupplyVoltage-Max5.5VSupplyVoltage-Min2VTimeFormatHH:MM:SS(12/24hr)TypeClock/CalendarVoltage-Supply,Battery2V~5.5VDS1302FeaturesCompletelyManagesAllTimekeepingFunctionsoReal-TimeClockCountsSeconds,Minutes,Hours,DateoftheMonth,Month,DayoftheWeek,andYearwithLeap-YearCompensationValidUpto2100o31x8Battery-BackedGeneral-PurposeRAMSimpleSerialPortInterfacestoMostMicrocontrollersoSimple3-WireInterfaceoTTL-Compatible(VCC=5V)oSingle-ByteorMultiple-Byte(BurstMode)DataTransferforReadorWriteofClockorRAMDataLowPowerOperationExtendsBatteryBackupRunTimeo2.0Vto5.5VFullOperationoUsesLessThan300nAat2.0V8-PinDIPand8-PinSOMinimizesRequiredSpaceOptionalIndustrialTemperatureRange:-40Cto+85CSupportsOperationinaWideRangeofApplicationsUnderwritersLaboratories(UL)RecognizedDS1302AdvantageTheDS1302trickle-chargetimekeepingchipcontainsareal-timeclock/calendarand31bytesofstaticRAM.Itcommunicateswithamicroprocessorviaasimpleserialinterface.Thereal-timeclock/calendarprovidesseconds,minutes,hours,day,date,month,andyearinformation.Theendofthemonthdateisautomaticallyadjustedformonthswithfewerthan31days,includingcorrectionsforleapyear.Theclockoperatesineitherthe24-houror12-hourformatwithanAM/PMindicator.InterfacingtheDS1302withamicroprocessorissimplifiedbyusingsynchronousserialcommunication.Onlythreewiresarerequiredtocommunicatewiththeclock/RAM:CE,I/O(dataline),andSCLK(serialclock).Datacanbetransferredtoandfromtheclock/RAM1byteatatimeorinaburstofupto31bytes.TheDS1302isdesignedtooperateonverylowpowerandretaindataandclockinformationonlessthan1W.TheDS1302isthesuccessortotheDS1202.InadditiontothebasictimekeepingfunctionsoftheDS1202,theDS1302hastheadditionalfeaturesofdualpowerpinsforprimaryandbackuppowersupplies,programmabletricklechargerforVCC1,andsevenadditionalbytesofscratchpadmemory.DS1302ApplicationsTheapplicationsofDS1302includeincorporateddigitalclocks/timersofvariousmodulesinourreallives.OtherequivalentsICsofRTCare:DS1307,DS3231,DS3232DS1302TypicalOperatingCircuitDS1302EnvironmentalandExportClassificationsAttributeDescriptionRoHSStatusRoHSnon-compliantMoistureSensitivityLevel(MSL)1(Unlimited)HowtoUseDS1302AtypicaloperatingcircuitforDS1302isgivenbelow.DS1302havetwopowerinput,oneisfromcellandotherisfromcontroller.Acrystaloscillatorof32.768kHzisusedtogeneraterequiredfrequency.ForinterfacingDataline,ResetPinandSerial-clockpinsofDS1302areconnectedwiththemicro-controller.DS1302BlockDiagramDS1302RTCModuleDS1302isatickle-chargetimekeepingchipwhichcontainsareal-timeclock/calendarand31bytesofstaticRAM.DS1302usesserialcommunicationtointeractwithmicrocontrollers.Also,itautomaticallyadjustthedateforthemonthwithfewerdays.Clockoperatesin24hror12hrformatwithanAM/PMindicator.DS1302chipisalsocommonlyusedasDS1302RTCmodulewhichcomeswitha32kHzcrystalandon-boardbatterybackupallinasmallSIPmodulethatiscompatiblewithabreadboard.DS1302moduleareusedbymakerswithArduino,RaspberryPiandotherMicro-controllers.ADS1302RTCmodulepinoutisshowninbelowimage.DS1302CommandByteAcommandbyteinitiateseachdatatransfer.TheMSB(bit7)mustbealogic1.Ifitis0,writestotheDS1302willbedisabled.Bit6specifiesclock/calendardataiflogic0orRAMdataiflogic1.Bits1to5specifythedesignatedregisterstobeinputoroutput,andtheLSB(bit0)specifiesawriteoperation(input)iflogic0orreadoperation(output)iflogic1.ThecommandbyteisalwaysinputstartingwiththeLSB(bit0).DS1302RegisterDS1302has12registers,ofwhich7registersarerelatedtocalendarandclock.ThestoreddatabitsareintheformofBCDcodes.Thecalendar,timeregistersandtheircontrolwordsareshowninTable1.Inaddition,DS1302alsohasyearregister,controlregister,chargingregister,clockburstregister,andRAM-relatedregisters.Theclockburstregistercanreadandwritethecontentsofallregistersexceptthechargingregisterinsequenceatonetime.TheDS1302andRAM-relatedregistersaredividedintotwocategories:OneisasingleRAMunit,with31intotal.Eachunitisconfiguredasan8-bitbyte,anditscommandcontrolwordisC0H~FDH.Amongthem,oddnumbersarereadoperations,andevennumbersarewriteoperations;theothertypeisRAMregistersinburstmode.Inthismode,all31bytesofRAMcanbereadandwrittenatonce,andthecommandcontrolwordsareFEH(write)andFFH(read).FAQWhatisDS1302?DS1302isatickle-chargetimekeepingchipwhichcontainsareal-timeclock/calendarand31bytesofstaticRAM.DS1302usesserialcommunicationtointeractwithmicrocontrollers.Also,itautomaticallyadjustthedateforthemonthwithfewerdays.WhatdoesanRTCdo?Areal-timeclock(RTC)isacomputerclock(mostoftenintheformofanintegratedcircuit)thatkeepstrackofthecurrenttime.Althoughthetermoftenreferstothedevicesinpersonalcomputers,serversandembeddedsystems,RTCsarepresentinalmostanyelectronicdevicewhichneedstokeepaccuratetime.HowdoyouuseRTC?WiringItUp.5VisusedtopowertotheRTCchipwhenyouwanttoqueryitforthetime.Ifthereisno5Vsignal,thechipgoestosleepusingthecoincellforbackup.ConnectGNDtocommonpower/dataground.ConnecttheSCLpintotheI2CclockSCLpinonyourArduino....ConnecttheSDApintotheI2CdataSDApinonyourArduino.

DescriptionTheTDA2822isadual-channel,single-chippoweramplifierintegratedcircuitdevelopedbyStMICROelectronics.Itiscommonlyusedasanaudioamplifierinportablecassetteplayers,cassetterecorders,andmultimediaactivespeakers.Ithasthecharacteristicsofsimplecircuit,goodsoundquality,widevoltagerangeandsoon.Itcanworkinthecircuitformofstereosoundandbridgeamplification(BTL).HowtoMakeaStereoAmplifierUsingICTDA2822?CatalogDescriptionTDA2822PinoutTDA2822CADModelTDA2822ParameterTDA2822ApplicationsTDA2822FeaturesTDA2822AdvantagesWheretouseTDA2822AmplifierICHowtouseTDA2822AmplifierTDA2822SchematicDiagramTDA2822DocumentsandMediaTDA2822EnvironmentalandExportClassificationsTDA2822CircuitOrdering&QuantityTDA2822PinoutPinNumberPinNameDescription1,3OutputProvidestheamplifiedAudiooutput5,8InvertingInput(IN-)TheInvertingPinofanamplifierisnormallygrounded6,7Non-InvertingInput(IN+)TheNon-Invertingpinisprovidedwiththeaudiosignal4Vcc-Connectedtothenegativesupplyrail2Vcc+ConnectedtoPositiveSupplyRailTDA2822CADModelTDA2822SymbolTDA2822FootprintTDA2822ParameterAudio-LoadImpedance8OhmsBaseProductNumberTDA2822BrandSTMicroelectronicsCategoryIntegratedCircuits(ICs)Linear-Amplifiers-AudioClassClass-ABDescription/FunctionHeadphone/SpeakerFactoryPackQuantity25Features-Gain39dBHeight4.59mmIb-InputBiasCurrent0.1uAInputTypeSingleLength20mmManufacturer:STMicroelectronicsMaxOutputPowerxChannels@Load3.2Wx1@8Ohm;1.7Wx2@4OhmMaximumOperatingTemperature:+150CMfrSTMicroelectronicsMinimumOperatingTemperature-40CMountingStyleThroughHoleNumberofChannels2ChannelOperatingSupplyCurrent12mAOperatingSupplyVoltage5V,9V,12VOperatingTemperature-40C~150C(TJ)OutputCurrent1500mAOutputPower3.2WOutputSignalTypeDifferential,SingleOutputType1-Channel(Mono)or2-Channel(Stereo)PackageTubePackage/Case16-DIP(0.300,7.62mm)Package/CasePDIP-16PackagingTubePartStatusObsoletePd-PowerDissipation4000mWProductAudioAmplifiersPSRR-PowerSupplyRejectionRatio40dBSeriesTDA2822SubcategoryAudioICsSupplierDevicePackage16-PowerDIPSupplyTypeSingleSupplyVoltageMax15VSupplyVoltageMin3VTHDplusNoise0.2%TypeClassABType1-ChannelMonoor2-ChannelStereoUnitWeight0.057419ozVoltageSupply3V~15VWidth7.1mmTDA2822ApplicationsAMandFMRadioamplifiersPortablemusicplayersLowPowerAudioamplifiersWienbridgeoscillatorPowerAmplifiersAudioboostersTDA2822FeaturesDualAmplifiersinoneDIP-8similarforLM368.Givepowerwattsat1W+1Wat4ohmsspeakers.Itisenough.WearehappyListeninginourcorner.Startvoltagesupplyof1.8Vto15V.Thewidealot.Saveenergywithonly6mA,Min.Thebandwidthexpansionratesat40dB120kHz.CheapandeasytouseTDA2822AdvantagesTDA2822isalowpowerstereoOpAmplifierusedinWalkmanplayersandHearingaids.Itcangive250mWoutput.TDA2822isanidealOpampforlowoutputapplications.Itisagoodchoiceasapreamplifierinstereohighpoweramplifiercircuits.Ithastwoinputsandtwooutputswhichcandeliver250milliwattsoutputpower.TheamplifiercircuitwithintheICiswellsetfornoisefreeoperation.Outputscanbedirectlycoupledtothespeakersthroughthedecouplingcapacitors.WheretouseTDA2822AmplifierICTheTDA2822isaDualAudioAmplifierIC,meaningithastwoOp-Ampsinsideitspackage,andtheyarecommonlyusedforaudioamplificationbecauseoftheirwidebandwidthgain.Thetwooutputscandeliver250milliwattsoutputpower.ThisICcanbeusedinportableaudiosystems,preamplifiers,hearingaidminiradio,headphoneamplifier,etc.SoifyouarelookingforadualpackageOperationalamplifierICwithhigh-gain,andwidebandwidthforaudioamplification,thenthisICmightbetherightchoiceforyou.HowtouseTDA2822AmplifierAnapplicationcircuitfromTDA2822datasheetisgivenbelowTheleftloadisconnectedtooutputpin1oftheICthroughelectrolyticcapacitorC4,andtherightloadisconnectedtooutputpin3throughelectrolyticcapacitorC5.TheInvertingInputPins(5and8)areconnectedtothegroundviaelectrolyticcapacitors.Non-InvertingInputPins(7and6)areconnectedtoinput1andinput2.Pin2isconnectedtoDCsupplyandpin4isconnectedtoground.ElectrolyticcapacitorC3connectedacrossVCCandground,workasafiltercapacitor.TDA2822SchematicDiagramTDA2822DocumentsandMediaDatasheetsTDA2822DesignResourcesDevelopmentToolSelectorHTMLDatasheetTDA2822TDA2822EnvironmentalandExportClassificationsAttributeDescriptionRoHSStatusROHS3CompliantMoistureSensitivityLevel(MSL)1(Unlimited)TDA2822CircuitTDA2822TestCircuit(Stereo)TDA2822TestCircuit(Bridge)TDA2822TypicalApplicationinPortablePlayersTDA2822LowCostApplicationinPortablePlayersTDA28223VStereoCassettePlayerwithMototSpeedControlI.Description74LS138isa3-lineto8-linedecoder/demultiplexer.Thechipisdesignedtobeusedinhigh-performancememory-decodingordata-routingapplications,requiringveryshortpropagationdelaytimes.Inhighperformancememorysystemsthesedecoderscanbeusedtominimizetheeffectsofsystemdecoding.Thethreeenablepinsofchip(inwhichTwoactive-lowandoneactive-high)reducetheneedforexternalgatesorinverterswhenexpanding.CatalogI.DescriptionII.DigitalVoltmeterCircuitFAQOrdering&QuantityII.DigitalVoltmeterCircuitWeuseAD574andAT89C2051toformahighprecisiondigitalvoltmeter.TheschematicdiagramisshowninFigure1.AD574isa12-bitsuccessivecomparisonA/Dconverterwith12datalinesintotal.P1ofAT89C2051isdirectlyconnectedtothehigh8-bitdatalineofAD574.Thelow4-bitdatalineofAD574isdirectlyconnectedwiththeupperhalf4-bitp1.4-p1.7ofsingle-chipmicrocomputer.Datareadingisbasedonthecontrollineofsinglechipmicrocomputer.P3.5isconnectedtoAD574byteshortperiodcontrolline(A0).P3.4isconnectedtoreadconversiondatacontrolpin.AndP3.7isdirectlyconnectedwiththeterminalofindicatingworkingstatus(STS).Suchstructuredeterminesthatitcanonlybe8-bitoutput,sothedatamodeselectionendcanbedirectlygrounded.AT89C2051hasonly15I/Oportwires,11ofwhichareusedabove,andonly4ofthemareleft.Theoutputdataisoutputthroughtheserialportofthesingle-chipmicrocomputer,andanexternal74LS164(serialinandparallelout)decoderisconnectedforexpansion.Atthesametime,thedatadisplayedis4bits,andtheremaining2portlinesstillcannotmeettherequirements.A74LS138decoderisneededtogatetheaddressofthedisplayLED.Hereweusetheinputmodeof10Vrange.Pin13ofAD574istheinputterminalofthemeasuredvoltage.BecauseonlyoneAD574conversionchipisused,theCSterminalcanbedirectlygrounded.Theconverteruses12Vpowersupplyvoltageandtheworkingvoltageis+5V.74LS164isaserialinputandparalleloutputdecoder.TheBCDserialcodeoutputbyAT89C2051throughtheserialportisdecodedby74LS164andoutputasaseven-segmentBCDcode,whichisdirectlyconnectedtoa-goftheLED,andthedatalinesofthefourLEDsareconnectedonebyone.LEDdigitaltubeusescommonanodetype.Theaddresscodeoutputby74LS138isconnectedtothecommonterminalofLEDviaatransistor2SA1015(PNP).Thedisplayofthefour-digitLEDistime-sharingstrobethroughtheaddressline,whichisourcommonlyuseddynamicscanningdisplaymethod.Itisworthmentioningthatinthedynamicscanningdisplaymode,thefrequencyofdynamicscanninghascertainrequirements.Ifthefrequencyistoolow,theLEDwillflicker.Ifthefrequencyistoohigh,thelightingtimeofeachLEDistooshort,andthebrightnessoftheLEDistoolow.Itcantbeseenclearlywithnakedeye.Soitisgenerallyappropriatetotakeabout10ms.Thisrequiresthatwhenwritingaprogram,acertainLEDshouldbeonandkeptforacertainperiodoftime.Theprogramoftenusesthecalldelaysubroutine.FAQWhatisthedifferencebetween74hc138and74LS138?Bothhavethesamefunction.74HC138ismadeofhigh-speedCMOSprocess,withlowpowerconsumption,highoutput,lowlevelandwiderange.74LS138adoptstheearlybipolarprocess,anditsdrivingcapabilityisrelativelylarger.Whatisthefunctionaldifferencebetween74ls138decoderand74ls148?74ls138isa3-8wiredecoder/multiplexer,74ls148isan8-3wireoctalpriorityencoder.Oneisdecodingandtheotherisencoding.OppositeeffectWhatsthedifferencebetween74LS138Dand74LS138N?Thosetwoarethesamechip,DisSOPpackage,NisDIPpackage.Whataretheoutputcharacteristicsof74LS138decoder?UnderthepremisethattheenableterminalsS1(activehigh),S2(activelow),andS3(activelow)arevalidatthesametime,onlyoneoutputterminalislowatatime(therestarehigh);Iftheenableterminalisinvalid,theoutputisallhighlevel.Whatdothelettersandnumbersin74ls138standfor?74ls138isa3-8-linedecoder.Thenumber74representsthe74seriesofthe54/74series,andthe74serieshasanoperatingtemperatureof0degreesto70degrees.LSisaseries,representingthelow-powerSchottkyseries.138isthevarietycode.Whatstheworkingprincipleof74ls138?74LS138workingprinciple①Whenonestrobeterminal(E1)ishighlevel,andtheothertwostrobeterminals(E2)and(E3)arelowlevel,attheoutputterminalscorrespondingtoY0toY7,thebinarycodeofaddressterminals(A0,A1,A2)canbedecodedatlowlevel.Forexample:whenA2A1A0=110,theY6outputterminaloutputsalow-levelsignal.②UsingE1,E2andE3,itcanbecascadedtoexpandintoa24-linedecoder;ifanexternalinverterisconnected,itcanalsobecascadedtoexpandintoa32-linedecoder.③Ifoneofthestrobeterminalsisusedasadatainputterminal,74LS138canalsobeusedasadatadistributor.④Itcanbeusedin8086decodingcircuittoexpandmemory.

访客,请您发表评论:

Powered By Tkool Electronics

Copyright Your WebSite.sitemap